

(To be filled in by the candidate)

Booklet Code: D

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATES (Read the Instructions carefully before Answering)

- Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Sheet for marking the responses and also the required data.
- Candidates should write the Hall Ticket Number only in the space provided on this page and the OMR Sheet. Do not Write the Hall ticket number anywhere else.
- 3. Immediately on opening the Question Paper Booklet by tearing off the paper seal please check for (i) The same booklet code (A/B/C/D) on each page, (ii) Serial number of the questions (1-160), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement with the same booklet code within five minutes from the commencement of the test.
- Electronic gadgets like Cell Phone, Pager, Calculator, Electronic watches and Mathematical/Log Tables are not permitted into the examination hall.
- Darken the appropriate circles of 1, 2, 3 or 4 in the OMR sheet corresponding to correct or the most appropriate answer to the concerned question number in the sheet. Darkening of more than one circle against any question automatically gets invalidated.
- 6. Rough work should be done only in the space provided for this purpose in the Question Paper Booklet.
- Once the candidate enters the Examination Hall, he/she shall not be permitted to leave the Hall till the end of the Examination.
- Ensure that the Invigilator puts his/her signature in the space provided on Question Paper Booklet and the OMR Answer Sheet. Candidate should sign in the space provided on the OMR Answer Sheet and filled in application form.
- The candidate should write the Question Paper Booklet number, OMR Answer Sheet number, sign in the space provided in the Nominal Rolls and affix the left hand thumb impression in the nominal rolls and filled in application form.
- Return the OMR Answer Sheet to the Invigilator before leaving the examination hall. Failure to
 return the OMR is liable for criminal action. The Question Paper Booklet shall be taken away by
 the candidate and should be preserved till the declaration of results.
- Filled-in application form shall be submitted to the invigilator in the examination hall. In case of SC/ST candidates attested copy of Caste Certificate should also be enclosed along with filled-in application form.

This booklet consists of 61 Pages for 160 questions + 2 Pages of Rough Work + 1 Title Page i.e. Total 64 Pages.

> **Q** E 2014 D

S. No. 41414

1

Time : 3 Hours

Instructions :

- (i) Each question carries one mark.
 పత ప్రశ్నకు ఒక మార్కు కలదు.
- (ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with blue/black ball point pen the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to you.

దిగువ ఇచ్చిన (పతి (పశ్నకు ఇవ్వబడిన వాటిలో సరియైన సమాధానమును ఎన్నుకొని దానిని సూచించే అంకె 1, 2, 3 లేక 4 వేరుగా ఇచ్చిన OMR సమాధాన పత్రములో (పశ్నకు సంబంధించిన సంఖ్యగల పేటికను బ్లూ/బ్లాక్ బాల్ పాయింట్ పెన్ను ఉపయోగించి నింపవలెను.

MATHEMATICS

The equation of a straight line, perpendicular to 3x - 4y = 6 and forming a triangle of area
 6 square units with coordinate axes, is

3x — 4y = 6కి లంబంగా ఉంటూ నిరూపకాక్షాలతో 6 చదరపు యూనిట్ల వైశాల్యం ఉన్న త్రభుజాన్ని ఏర్పరచే ఒక పరళరేఖా సమీకరణం

- (1) x 2y = 6(2) 4x + 3y = 12(3) 4x + 3y + 24 = 0(4) 3x + 4y = 12
- 2. If the image of $\left(\frac{-7}{5}, \frac{-6}{5}\right)$ in a line is (1, 2), then the equation of the line is

ఒక పరళరోఖలో $\left(\frac{-7}{5}, \frac{-6}{5}\right)$ యొక్క (పతిచింబం (1, 2) అయితే ఆ రోఖా సమీకరణం (1) 4x + 3y = 1(2) 3x - y = 0(3) 4x - y = 0(4) 3x + 4y = 1

 If a line l passes through (k, 2k), (3k, 3k) and (3, 1), k ≠ 0, then the distance from the origin to the line l is

(k, 2k), (3k, 3k), (3, 1), k ≠ 0, ల గుండా ఒక పరళరేఖ / పోతూ ఉంటే, మూలబిందువు నుండి ఆ రేఖ / కు దూరం

- (1) $\frac{1}{\sqrt{5}}$ (2) $\frac{4}{\sqrt{5}}$ (3) $\frac{3}{\sqrt{5}}$ (4) $\frac{2}{\sqrt{5}}$
- 4. The area (in square units) of the triangle formed by the lines $x^2 3xy + y^2 = 0$ and x + y + 1 = 0

సరళరోఖలు x² – 3xy + y² = 0, x + y + 1 = 0 లతో ఏర్పడే త్రిభుజ వైశాల్యం (చదరపు యుగ్నట్లలో)

- (1) $\frac{2}{\sqrt{3}}$ (2) $\frac{\sqrt{3}}{2}$ (3) $5\sqrt{2}$ (4) $\frac{1}{2\sqrt{5}}$
- 5. If $x^2 + \alpha y^2 + 2\beta y = a^2$ represents a pair of perpendicular lines, then $\beta = x^2 + \alpha y^2 + 2\beta y = a^2 z$ ε ຍາຍາດຫຼາດມາການລົງ ພາລິງ ພລິງ $\beta =$ (1) 4a (2) a (3) 2a (4) 3a
- A circle with centre at (2, 4) is such that the line x + y + 2 = 0 cuts a chord of length 6. The radius of the circle is

(2, 4)వద్ద కేంద్రం కల్గిన ఒక వృత్తంను, సరళరేఖ x + y + 2 = 0 ఏర్పరచే జ్యా పొడవు 6 అయితే ఆ వృత్త వ్యాసార్థం

- (1) $\sqrt{41}$ (2) $\sqrt{11}$
- (3) $\sqrt{21}$ (4) $\sqrt{31}$

7. The point at which the circles $x^2 + y^2 - 4x - 4y + 7 = 0$ and $x^2 + y^2 - 12x - 10y + 45 = 0$ touch each other is

వృత్తాలు $x^2 + y^2 - 4x - 4y + 7 = 0$, $x^2 + y^2 - 12x - 10y + 45 = 0$ లు స్పృశించుకొనే బిందువు

- (1) $\left(\frac{13}{5}, \frac{14}{5}\right)$ (2) $\left(\frac{2}{5}, \frac{5}{6}\right)$
- (3) $\left(\frac{14}{5}, \frac{13}{5}\right)$ (4) $\left(\frac{12}{5}, 2 + \frac{\sqrt{21}}{5}\right)$
- 8. The condition for the lines lx + my + n = 0 and $l_1x + m_1y + n_1 = 0$ to be conjugate with respect to the circle $x^2 + y^2 = r^2$ is

వృత్తం $x^2 + y^2 = r^2$ దృష్ట్యా పరళరేఖలు $lx + my + n = 0, l_1x + m_1y + n_1 = 0$ లు సంయుగ్మాలు అవటానికి నియమం

- (1) $r^2(ll_1 + mm_1) = nn_1$ (2) $r^2(ll_1 mm_1) = nn_1$
- (3) $r^2(ll_1 + mm_1) + nn_1 = 0$ (4) $r^2(lm_1 + l_1m) = nn_1$

9. The length of the common chord of the two circles $x^{2} + y^{2} - 4y = 0$ and $x^{2} + y^{2} - 8x - 4y + 11 = 0$ is $3 + y^{2} - 4y = 0$, $x^{2} + y^{2} - 8x - 4y + 11 = 0$ $2 + 4x + 2x^{2} + 2x$

$\underline{\mathbb{A}}$

10. The locus of the centre of the circle which cuts the circle $x^2 + y^2 - 20x + 4 = 0$ orthogonally and touches the line x = 2 is

వృత్తం $x^2 + y^2 - 20x + 4 = 0$ ను లంబఛేదనం చేస్తూ, సరళరేఖ x = 2 ను స్పృశించే వృత్త కేంద్రపు బిందు పథం (1) $x^2 = 16y$ (2) $y^2 = 4x$ (3) $y^2 = 16x$ (4) $x^2 = 4y$

11. If a normal chord at a point t on the parabola y² = 4ax subtends a right angle at the vertex, then t = పరావలయుం y² = 4axైప బిందువు t వద్ద అభిలంబజ్యా, శీర్మం వద్ద లంబకోణం చేస్తే అప్పుడు t =

(1) 1 (2) $\sqrt{2}$ (3) 2 (4) $\sqrt{3}$

- 12. The slopes of the focal chords of the parabola $y^2 = 32x$ which are tangents to the circle $x^2 + y^2 = 4$ are పృత్తం $x^2 + y^2 = 4$ వకు సృర్శరేఖలవుతూ ఉండే పరావలయం $y^2 = 32x$ యొక్క నాభిజ్యాల వాలులు (1) $\frac{1}{2}, \frac{-1}{2}$ (2) $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$
 - (3) $\frac{1}{\sqrt{15}}, \frac{-1}{\sqrt{15}}$ (4) $\frac{2}{\sqrt{5}}, \frac{-2}{\sqrt{5}}$

Rough Work

4 Q

13. If tangents are drawn from any point on the circle $x^2 + y^2 = 25$ to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ then the angle between the tangents is

		దీర్ఘ వృత్తం	$\frac{x^2}{16} + \frac{y^2}{9} = 1$ ဒီ သံဥ၀၇ ဒီယုဒ	ు గిస్తు
అప్పుడు ఆ స్పర్శరేఖ	ల మధ్య కోణం			
(1) $2\frac{\pi}{3}$	(2) $\frac{\pi}{4}$	(3) $\frac{\pi}{3}$	(4) $\frac{\pi}{2}$	

- 14. An ellipse passing through $(4\sqrt{2}, 2\sqrt{6})$ has foci at (-4, 0) and (4, 0). Its eccentricity is $(4\sqrt{2}, 2\sqrt{6})$ గుండా పోయే ఒక దీర్ఘవృత్తానికి (-4, 0), (4, 0)ల వద్ద నాభులున్నాయి. దాని ఉత్యేంద్రత
 - (1) $\sqrt{2}$ (2) $\frac{1}{2}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{3}}$
- 15. A hyperbola passes through a focus of the ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1$. Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse. The product of eccentricities is 1. Then the equation of the hyperbola is

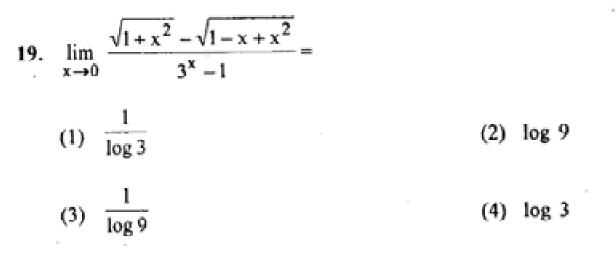
ఒక అతిపరావలయం, దీర్ఘవృత్తం $\frac{x^2}{169} + \frac{y^2}{25} = 1$ యొక్క నాభిగుండా. పోతూ ఉంది. దాని తిర్యక్ అక్షం, సంయుగ్మ అక్షంలు వరుసగా దీర్ఘ వృత్తపు దీర్ఘాక్షం, (హస్వాక్షంలతో ఏకిభవిస్తాయి. వాటి ఉత్యేంద్రతల లబ్ధం 1. అప్పుడు అతి పరావలయు సమీకరణం

(1)
$$\frac{x^2}{144} - \frac{y^2}{9} = 1$$
 (2) $\frac{x^2}{169} - \frac{y^2}{25} = 1$ (3) $\frac{x^2}{144} - \frac{y^2}{25} = 1$ (4) $\frac{x^2}{25} - \frac{y^2}{9} = 1$

16. If the line joining A(1, 3, 4) and B is divided by the point (-2, 3, 5) in the ratio 1 : 3, then B is

A(1, 3, 4), B లను కలిపే రేఖను (-2, 3, 5) అనే బిందువు 1 : 3 నిష్పత్రిలో విభజిస్తే అప్పుడు B (1) (-11, 3, 8) (3) (-8, 12, 20) (4) (13, 6, -13)

17. If the direction cosines of two lines are given by l + m + n = 0 and $l^2 - 5m^2 + n^2 = 0$ then the angle between them is రెండు పరళరేఖల చిక్ కొసైసనులు l + m + n = 0, $l^2 - 5m^2 + n^2 = 0$ లతో ఇవ్వబడితే ఆ రెండు రేఖల మధ్య కోణం


(1)	$\frac{\pi}{2}$		(2)	$\frac{\pi}{6}$
(3)	$\frac{\pi}{4}$		(4)	$\frac{\pi}{3}$

18. If A(3, 4, 5), B(4, 6, 3), C(-1, 2, 4) and D(1, 0, 5) are such that the angle between the lines \overrightarrow{DC} and \overrightarrow{AB} is θ then $\cos \theta =$

A(3, 4, 5), B(4, 6, 3), C(-1, 2, 4), D(1, 0, 5) లు DC, ABల వుధ్యకోణం θ అయ్యేట్లుగా ఉంటే అప్పుడు cos θ =

(1)	$\frac{7}{9}$	(2)	<u>2</u> 9
(3)	$\frac{4}{9}$	(4)	<u>5</u> 9

20. If $f : [-2, 2] \rightarrow \mathbb{R}$ is defined by

$$f(x) = \begin{cases} \frac{\sqrt{1+cx} - \sqrt{1-cx}}{x} & \text{for } -2 \le x < 0\\ \frac{x+3}{x+1} & \text{for } 0 \le x \le 2 \end{cases}$$

is continuous on [--2, 2], then c =

f:[-2, 2] → ℝ ⊃

$$f(x) = \begin{cases} \frac{\sqrt{1+cx} - \sqrt{1-cx}}{x} & (-2 \le x < 0 \text{ $\$}) \\ \frac{x+3}{x+1} & (0 \le x \le 2 \text{ $\$}) \\ . \end{cases}$$

 T నిర్వచింపబడి, ప్రమేయం [-2, 2] పై అవిచ్చిన్నం అయితే అప్పుడు c =

(1)
$$\frac{2}{\sqrt{3}}$$
 (2) 3 (3) $\frac{3}{2}$ (4) $\frac{3}{\sqrt{2}}$

21. If $f(x) = x \tan^{-1} x$ then $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} =$ $f(x) = x \tan^{-1} x = 0$ if $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} =$ (1) $\frac{\pi + 3}{.4}$ (2) $\frac{\pi}{4}$ (3) $\frac{\pi + 1}{4}$ (4) $\frac{\pi + 2}{4}$ 22. $y = \tan^{-1} \left(\frac{\sqrt{1 + a^2 x^2} - 1}{a} \right) \Rightarrow (1 + a^2 x^2) y'' + 2a^2 x y' =$

(1)
$$-2a^2$$
 (2) a^2 (3) $2a^2$ (4) 0

23. If
$$f(x) = \frac{x}{1+x}$$
 and $g(x) = f(f(x))$ then $g'(x) =$

$$f(x) = \frac{x}{1+x}, g(x) = f(f(x)) అయితే అప్పుడు g'(x) =$$

(1)
$$\frac{1}{(2x+3)^2}$$
 (2) $\frac{1}{(x+1)^2}$ (3) $\frac{1}{x^2}$ (4) $\frac{1}{(2x+1)^2}$

24. If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{25} + \frac{y^2}{16} = 1$ cut each other orthogonally, then $a^2 - b^2 = 1$

వకాలు
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $\frac{x^2}{25} + \frac{y^2}{16} = 1$ లు లంబ ఛేదనం చేసుకొంటే, అప్పుడు $a^2 - b^2 = 1$

25. The condition that $f(x) = ax^3 + bx^2 + cx + d$ has no extreme value is

 $f(x) = ax^3 + bx^2 + cx + d$ ී පෙරෙදු බපාය විජාංශසංබදී බහායාං (1) $b^2 > 3ac$ (2) $b^2 = 4ac$ (3) $b^2 = 3ac$ (4) $b^2 < 3ac$

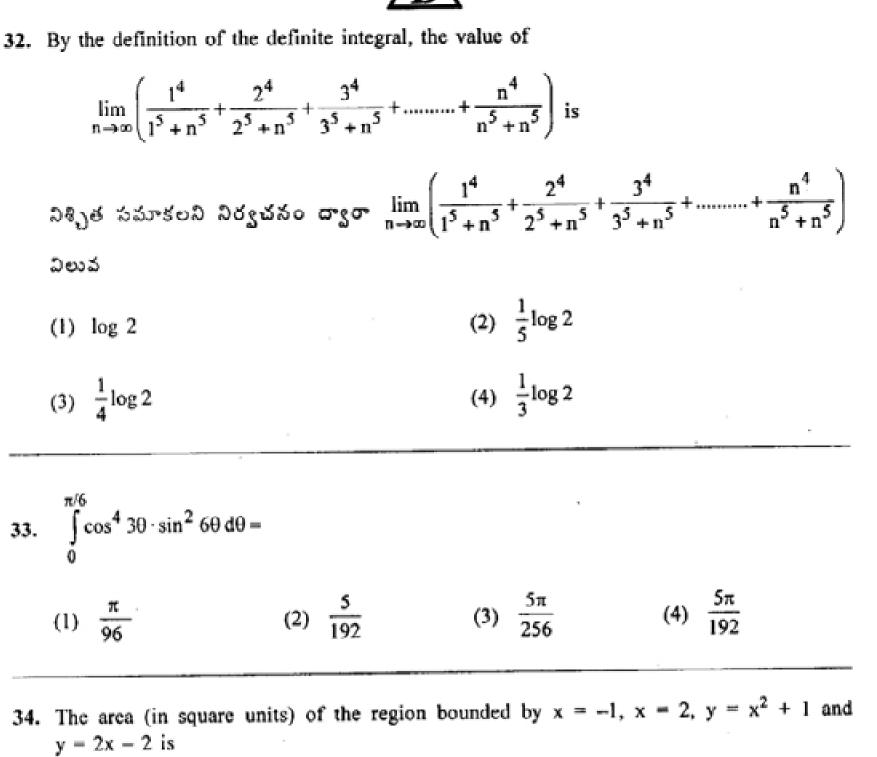
26. If there is an error of ± 0.04 cm in the measurement of the diameter of a sphere then the approximate percentage error in its volume, when the radius is 10 cm, is ± 5 ෆීళ వ్యాసం కొలవడంలో ± 0.04 సం.మీ దోషం ఉంటే, ఆ గోళ వ్యాపార్థం 10 సం.మీ. ఉన్నప్పుడు, గోళ ఘన పరిమాణంలో ఉజ్ఞాయింపు దోష శాతం (1) ± 1.2 (2) ± 0.06 (3) ± 0.006 (4) ± 0.6

27. The value of c in the Lagrange's mean-value theorem for $f(x) = \sqrt{x-2}$ in the interval [2, 6] is

అంతరం [2,6]లో (పమేయుం f(x)=√x−2 కి లెగ్రాంజ్ మధ్యమ ఎలువ సిద్ధాంతాన్ని అనుపరించే c విలువ

(1) $\frac{9}{2}$ (2) $\frac{5}{2}$ (3) 3 (4) 4

28. $\int \frac{dx}{\sqrt{\sin^3 x \cos x}} = g(x) + c \Longrightarrow g(x) =$


(1)	$\frac{-2}{\sqrt{\cot x}}$	(2)	$\frac{-2}{\sqrt{\tan x}}$
(3)	$\frac{2}{\sqrt{\cot x}}$	(4)	$\frac{2}{\sqrt{\tan x}}$

ł

29. If
$$\int \frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}} = \frac{A\sqrt{x}}{\sqrt{1-x}} + \frac{B}{\sqrt{1-x}} + C$$
, where C is a real constant then A + B =
 $\int \frac{dx}{(1+\sqrt{x})\sqrt{x-x^2}} = \frac{A\sqrt{x}}{\sqrt{1-x}} + \frac{B}{\sqrt{1-x}} + C e^4 C a^{-1} a^{-$

(1) $\frac{1}{2}$ (2) 3 (3) 2 (4) 1

 $x = -1, x = 2, y = x^2 + 1, y = 2x - 2 లతో పరిబద్ధ (పదేశపు వైశాల్యం (చదరపు యూనిట్లలో)$ (1) 10 (2) 7 (3) 8 (4) 9

35. The differential equation of the family of parabolas with vertex at (0, -1) and having axis along the y-axis is

(0, -1) చద్ద శీర్వం కల్ల్, y-అక్షం దిశగా అక్షరోఖ కల్లొన పరావలయాల కుటుంబపు అవకలన సమీకరణము (1) yy' + 2xy + 1 = 0(2) xy' + y + 1 = 0(3) xy' - 2y - 2 = 0(4) xy' - y - 1 = 0

36. The solution of $x \frac{dy}{dx} = y + x e^{y/x}$ with y(1) = 0 is $x \frac{dy}{dx} = y + x e^{y/x}$ § y(1) = 0 with y(1) = 0 is (1) $e^{y/x} + \log x = 1$ (2) $e^{-y/x} = \log x$ (3) $e^{-y/x} + 2 \log x = 1$ (4) $e^{-y/x} + \log x = 1$

- 37. The solution of $\cos y + (x \sin y 1) \frac{dy}{dx} = 0$ is
 - cos y + (x sin y 1) $\frac{dy}{dx} = 0$ ま かゆる (1) x sec y = tan y + c (3) tan y + sec y = cx (4) x sec y + tan y = c

38. If R is the set of all real numbers and if $f: \mathbb{R} - \{2\} \rightarrow \mathbb{R}$ is defined by $f(x) = \frac{2+x}{2-x}$ for $x \in \mathbb{R} - \{2\}$, then the range of f is \mathbb{R} వాస్తవ సంఖ్యా సమితి అవుతూ, $f: \mathbb{R} - \{2\} \rightarrow \mathbb{R}$ విర్వచనం [పతి $x \in \mathbb{R} - \{2\}$ § $f(x) = \frac{2+x}{2-x}$ అయితే అప్పుడు f యొక్క వ్యాప్తి. (1) $\mathbb{R} - \{-2\}$ (2) \mathbb{R} (3) $\mathbb{R} - \{1\}$ (4) $\mathbb{R} - \{-1\}$

39. Let Q be the set of all rational numbers in [0, 1] and $f: [0, 1] \rightarrow [0, 1]$ be defined by

 $f(x) = \begin{cases} x & \text{for } x \in Q \\ 1-x & \text{for } x \notin Q \end{cases}$ Then the set S = {x ∈ [0, 1] : (f o f) (x) = x} is equal to [0, 1]లోని అకరణీయ సంఖ్యల సమితి Q అనీ, f : [0, 1] → [0, 1] నిర్వచనం $f(x) = \begin{cases} x & (x \in Q \hat{S}) \\ 1-x & (x \notin Q \hat{S}) \\ 1-x & (x \notin Q \hat{S}) \end{cases}$ అని అనుకోండి. అప్పుడు సమితి S = {x ∈ [0, 1] : (f o f) (x) = x} is సమానమైనది (1) [0, 1] (2) Q (3) [0, 1] - Q (4) (0, 1)

40. $\sum_{k=1}^{2n+1} (-1)^{k-1} \cdot k^2 =$ (1) (n - 1) (2n - 1)
(2) (n + 1) (2n + 1)
(3) (n + 1) (2n - 1)
(4) (n - 1) (2n + 1)

41. If a, b, c and d are real numbers such that $a^2 + b^2 + c^2 + d^2 = 1$ and if $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$ then $A^{-1} =$ $arisis isopgen a, b, c, d \approx a^2 + b^2 + c^2 + d^2 = 1$ wongent down. $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$ wound wis not $A^{-1} =$ (1) $\begin{bmatrix} a+ib & -c-id \\ c-id & a-ib \end{bmatrix}$ (2) $\begin{bmatrix} a-ib & c+id \\ -c+id & a+ib \end{bmatrix}$ (3) $\begin{bmatrix} a-ib & -c-id \\ c-id & a+ib \end{bmatrix}$ (4) $\begin{bmatrix} a+ib & c+id \\ c-id & a-ib \end{bmatrix}$

Rough Work

-

Rough Work

.

S20

45. The least positive integer n for which $(1 + i)^n = (1 - i)^n$ holds is

46. If
$$x = p + q$$
, $y = pw + qw^2$ and $z = pw^2 + qw$ where w is a complex cube root of unity
then $xyz =$
 $x = p + q$, $y = pw + qw^2$, $z = pw^2 + qw$ of w කාබධ වර්දී වාර්තා වර්ග කොට
කර්ථා හිර $xyz =$
(1) $p^3 + q^3$ (2) $p^2 - pq + q^2$ (3) $1 + p^3 + q^3$ (4) $p^3 - q^3$
47. If $Z_r = \cos\left(\frac{\pi}{2^r}\right) + i \sin\left(\frac{\pi}{2^r}\right)$ for $r = 1, 2, 3, \dots$ then $Z_1 Z_2 Z_3 \dots \infty =$
 $r = 1, 2, 3, \dots$ $Z_r = \cos\left(\frac{\pi}{2^r}\right) + i \sin\left(\frac{\pi}{2^r}\right) + i \sin\left(\frac{\pi}{2^r}\right)$ කොම කර්ථා $Z_1 Z_2 Z_3 \dots \infty =$

48. If x_1 and x_2 are the real roots of the equation $x^2 - kx + c = 0$ then the distance between the points A(x₁, 0) and B(x₂, 0) is

x₁, x₂లు సమీకరణం x² - kx + c = 0 కి మూలాలైతే అప్పుడు చిందువులు A(x₁, 0), B(x₂, 0)ల మధ్య దూరం

(1) $\sqrt{k^2 + 4c}$ (2) $\sqrt{k^2 - c}$ (3) $\sqrt{c - k^2}$ (4) $\sqrt{k^2 - 4c}$

49. If x is real, then the minimum value of $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ is

x వాస్తవ సంఖ్య అయితే, ఆప్పుడు $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ కనిష్ఠ విలువ

(1) 3 (2) $\frac{1}{3}$ (3) $\frac{1}{2}$ (4) 2

50. If p and q are distinct prime numbers and if the equation x² - px + q = 0 has positive integers as its roots then the roots of the equation are p, qలు విభిన్న ప్రధాన సంఖ్యలవుతూ, సమీకరణం x² - px + q = 0 కి ధనపూర్ణాంకాలు మూలాలుగా ఉంటే అప్పుడు ఆ సమీకరణపు మూలాలు

(1) 1, -1
(2) 2, 3
(3) 1, 2
(4) 3, 1

51. The cubic equation whose roots are the squares of the roots of $x^3 - 2x^2 + 10x - 8 = 0$ is $x^3 - 2x^2 + 10x - 8 = 0$ కి గల మూలాల వర్షాలను మూలాలుగా కల్గిన ఫున సమీకరణం (1) $x^3 + 16x^2 + 68x - 64 = 0$ (2) $x^3 + 8x^2 + 68x - 64 = 0$ (3) $x^3 + 16x^2 - 68x - 64 = 0$ (4) $x^3 - 16x^2 + 68x - 64 = 0$

52. Out of thirty points in a plane, eight of them are collinear. The number of straight lines that can be formed by joining these points is

ఒక సమతలంలోని ముప్పది బిందువుల్లో ఎనిమిది బిందువులు సరేఖీయాలు. ఈ బిందువులను కలుపుతూ గీయగలిగిన సరళరేఖల సంఖ్య

(1) 296 (2) 540 (3) 408 (4) 348

53. If n is an integer with 0 ≤ n ≤ 11 then the minimum value of n ! (11 - n) ! is attained when a value of n =
0 ≤ n ≤ 11 అయ్యేట్లు ఉండే పూర్ణాంకం n అయితే n ! (11 - n) ! కనిష్ట విలువ పొందటానికి ఒక n ఎలువ
(1) 11
(2) 5
(3) 7
(4) 9

54. If
$$(a + bx)^{-3} = \frac{1}{27} + \frac{1}{3}x + \dots$$
 then the ordered pair $(a, b) =$
 $(a + bx)^{-3} = \frac{1}{27} + \frac{1}{3}x + \dots$ wows with with the ordered pair $(a, b) =$

 (1) $(3, -27)$
 (2) $\left(1, \frac{1}{3}\right)$
 (3) $(3, 9)$
 (4) $(3, -9)$

55. The term independent of x in the expansion of $\left(\sqrt{x} - \frac{2}{\sqrt{x}}\right)^{18}$ is

$$\left(\sqrt{x} - \frac{2}{\sqrt{x}}\right)^{18}$$
 విషరణలో x నుంచి స్వతంత్ పదం
(1) $- \begin{pmatrix} 18\\ 9 \end{pmatrix} 2^9$ (2) $\begin{pmatrix} 18\\ 9 \end{pmatrix} 2^{12}$
(3) $\begin{pmatrix} 18\\ 6 \end{pmatrix} 2^6$ (4) $\begin{pmatrix} 18\\ 6 \end{pmatrix} 2^8$

56.	$\frac{2x^3 + x^2 - 5}{x^4 - 25} = \frac{Ax + B}{x^2 - 5} + \frac{Cx + 1}{x^2 + 5} \Rightarrow$	(A, B, C) =		
	(1) (1, 1, 1)		(2)	(1, 1, 0)
	(3) (1, 0, 1)		(4)	(1, 2, 1)

57. If $\cos x = \tan y$, $\cot y = \tan z$ and $\cot z = \tan x$; then $\sin x =$

cos x = tan y, cot y = tan z, cot z = tan x అయితే ఆప్పుడు sin x =

(1)	$\frac{\sqrt{5}+1}{4}$		(2)	$\frac{\sqrt{5}-1}{4}$
(3)	$\frac{\sqrt{5}+1}{2}$		(4)	$\frac{\sqrt{5}-1}{2}$

58. $\tan 81^\circ - \tan 63^\circ - \tan 27^\circ + \tan 9^\circ =$ (1) 6 (2) 0 (3) 2 (4) 4

59. If x and y are acute angles such that $\cos x + \cos y = \frac{3}{2}$ and $\sin x + \sin y = \frac{3}{4}$ then $\sin (x + y) =$

అల్ఫకోణాలు x, yలు cos x + cos y = $\frac{3}{2}$, sin x + sin y = $\frac{3}{4}$ అయ్యేట్లుంటే అప్పుడు sin (x + y) = (1) $\frac{2}{5}$ (2) $\frac{3}{4}$ (3) $\frac{3}{5}$ (4) $\frac{4}{5}$

www.sakshied cation.com

١,

60. The sum of the solutions in (0, 2 π) of the equation $\cos x \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right) = \frac{1}{4}$ is

సమీకరణం
$$\cos x \cos \left(\frac{\pi}{3} - x\right) \cos \left(\frac{\pi}{3} + x\right) = \frac{1}{4} {}^{3}$$
 $(0, 2\pi)$ లో ఉన్న సాధనల మొత్తం
(1) 4π (2) π (3) 2π (4) 3π
61. If $x > 0, y > 0, z > 0, xy + yz + zx < 1$ and if $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \pi$ then $x + y + z =$

x > 0, y > 0, z > 0, xy + yz + zx < 1 అవృతూ tan⁻¹x + tan⁻¹y + tan⁻¹z = π అయితే అప్పుడు x + y + z =

(4) √xyz

- (1) 0 (2) xyz
- (3) 3xyz

62.
$$\operatorname{sech}^{-1}\left(\frac{1}{2}\right) - \operatorname{cosech}^{-1}\left(\frac{3}{4}\right) =$$

(1) $\log_{e}\left(3(2+\sqrt{3})\right)$
(2) $\log_{e}\left(\frac{1+\sqrt{3}}{3}\right)$
(3) $\log_{e}\left(\frac{2+\sqrt{3}}{3}\right)$
(4) $\log_{e}\left(\frac{2-\sqrt{3}}{3}\right)$

63. In any ΔABC,
$$\frac{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}{4b^{2}c^{2}} =$$

$$(1) \sin^{2} B$$

$$(3) \cos^{2} B$$

$$(2) \cos^{2} A$$

$$(4) \sin^{2} A$$

64. The point P(1, 3) undergoes the following transformations successively :

(i) Reflection with respect to the line y = x

(ii) Translation through 3 units along the positive direction of the X-axis

(iii) Rotation through an angle of $\frac{\pi}{6}$ about the origin in the clockwise direction.

The final position of the point P is

బిందువు P(1, 3) వరుసగా క్రింది పరివర్తనలను చెందుతోంది :

(i) పరళరేఖ y = x దృష్ట్యా పరావర్తనం

(ii) X-అక్షపు ధనాత్మక దిశలో 3 యూనిట్ల ఆక్ష సమాంతర పరివర్షన

(iii) మూల బిందువుైప ప్రదక్షిణ దిశలో ^π/₆ కోణంతో భ్రమణ పరివర్తన ఆ బిందువు P తుదిస్థానం

(1)
$$\left(\frac{6\sqrt{3}+1}{2}, \frac{\sqrt{3}-6}{2}\right)$$

(2) $\left(\frac{7}{\sqrt{2}}, \frac{-5}{\sqrt{2}}\right)$
(3) $\left(\frac{6+\sqrt{3}}{2}, \frac{1-6\sqrt{3}}{2}\right)$
(4) $\left(\frac{6\sqrt{3}-1}{2}, \frac{6+\sqrt{3}}{2}\right)$

65. The locus of the centroid of the triangle with vertices at $(a \cos \theta, a \sin \theta)$, $(b \sin \theta, -b \cos \theta)$ and (1, 0) is (Here θ is a parameter)

(a cos θ, a sin θ), (b sin θ, – b cos θ), (1, 0) ల వద్ద శీర్షాలు కల త్రభుజపు కొందాభాసపు బిందు పథం (ఇక్కడ θ ఒక పరామితి)

- (1) $(3x + 1)^2 + 9y^2 = a^2 + b^2$ (2) $(3x 1)^2 + 9y^2 = a^2 b^2$
- (3) $(3x 1)^2 + 9y^2 = a^2 + b^2$, (4) $(3x + 1)^2 + 9y^2 = a^2 b^2$
- 66. If the mean and variance of a binomial variate X are 8 and 4 respectively then P(X < 3) =

X అనేది మధ్యమం, విస్తృతి వరుసగా 8, 4 కల్గిన ద్విపద చలరాశి అయితే అప్పుడు P(X<3)=

(1)	$\frac{265}{2^{15}}$	(2)	$\frac{137}{2^{16}}$
(3)	$\frac{697}{2^{16}}$	(4)	$\frac{265}{2^{16}}$

67. A random variable X has the probability distribution given below. Its variance is

ఒక యాదృచ్చిక చలరాశి X సంభావ్యతా విభాజనం క్రింద ఈయబడింది. దాని విస్తృతి

68. A candidate takes three tests in succession and the probability of passing the first test is p.

The probability of passing each succeeding test is p or $\frac{p}{2}$ according as he passes or fails in the preceding one. The candidate is selected if he passes at least two tests. The probability that the candidate is selected is

బక అభ్యర్థి వరుసగా మూడు పరీక్షలు రాస్తాడు, మొదటి పరీక్ష ఉత్తీర్ధుడయ్యే సంభ్యావత p. క్రిందటి పరీక్షలో ఉత్తీర్ధుడవటం, ఉత్తీర్ధుడు కాకపోవటంపై ఆధారపడి తర్వాత పరీక్షలో ఉత్తీర్ధుడపటానికి సంభావ్యతలు వరుసగా p, $\frac{p}{2}$. అభ్యర్థి ఎంపికకు కనీసం రెండు పరీక్షల్లో డత్తీర్ధుడు కావాలె. ఒక అభ్యర్థి ఎంపికయ్యే సంభావ్యత (1) $p^2(2-p)$ (2) p(2-p) (3) $p + p^2 + p^3$ (4) $p^2(1-p)$

69. A six-faced unbiased die is thrown twice and the sum of the numbers appearing on the upper face is observed to be 7. The probability that the number 3 has appeared at least once is

ఒక ఆరు ముఖాల నిష్పాక్షిక పాచికను రెండుసార్డు దొర్ణించి, దాన్మి ముఖం మీద వచ్చిన సంఖ్యల మొత్తం 7గా గమనించారు. వాటిలో కనీసం ఒక్కసారైనా 3 వచ్చే సంభావ్యత (1) $\frac{1}{5}$ (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (4) $\frac{1}{4}$

70. If A, B and C are mutually exclusive and exhaustive events of a random experiment such that
$$P(B) = \frac{3}{2}P(A)$$
 and $P(C) = \frac{1}{2}P(B)$ then $P(A \cup C) =$
A, B, C \cup 25 \cdots 25

71. If x_1, x_2, \dots, x_n are n observations such that $\sum_{i=1}^n x_i^2 = 400$ and $\sum_{i=1}^n x_i = 80$ then the least

value of n is

n పరిశీలనలు	x ₁ , x ₂ ,, x _n లకు	$\sum_{i=1}^{n} x_i^2 = 400, \ \sum_{i=1}^{n} x_i = 80$	అయితే n కనిష్ఠ విలువ
(1) 18	(2) 12	(3) 15	(4) 16

72. The mean of four observations is 3. If the sum of the squares of these observations is 48 then their standard deviation is నాలుగు పరిశీలనల మధ్యమం 3. ఆ పరిశీలనల వర్గాల మొత్తం 48 అయిలే వాటి క్రమ (ప్రామాణిక) విచలనం (1) $\sqrt{7}$ (2) $\sqrt{2}$ (3) $\sqrt{3}$ (4) $\sqrt{5}$

73. The shortest distance between the skew lines $\overline{r} = (\overline{i} + 2\overline{j} + 3\overline{k}) + t(\overline{i} + 3\overline{j} + 2\overline{k})$ and $\overline{r} = (4\overline{i} + 5\overline{j} + 6\overline{k}) + t(2\overline{i} + 3\overline{j} + \overline{k})$ is $\Theta \overline{\sigma} \simeq \overline{a} \ge \overline{d} \ge \overline{c}$ $\overline{r} = (\overline{i} + 2\overline{j} + 3\overline{k}) + t(\overline{i} + 3\overline{j} + 2\overline{k}), \ \overline{r} = (4\overline{i} + 5\overline{j} + 6\overline{k}) + t(2\overline{i} + 3\overline{j} + \overline{k}) = \ \text{asymptotic} \le \overline{a} \simeq \overline{a} \le \overline{c} \ge \overline{a} \simeq \overline{c}$ (1) $\sqrt{6}$ (2) 3 (3) $2\sqrt{3}$ (4) $\sqrt{3}$

74. If x, y, z are non-zero real numbers, $\overline{a} = x\overline{i} + 2\overline{j}$, $\overline{b} = y\overline{j} + 3\overline{k}$ and $\overline{c} = x\overline{i} + y\overline{j} + z\overline{k}$ are such that $\overline{a} \times \overline{b} = z\overline{i} - 3\overline{j} + \overline{k}$ then $[\overline{a}\ \overline{b}\ \overline{c}] =$ x, y, zeo $\sqrt[3]{2}$ \sqrt

- 75. If \overline{a} , \overline{b} and \overline{c} are vectors with magnitudes 2, 3 and 4 respectively then the best upper bound of $|\overline{a} - \overline{b}|^2 + |\overline{b} - \overline{c}|^2 + |\overline{c} - \overline{a}|^2$ among the given values is ā, b̄, ē లు వరుసగా 2, 3, 4 పరిమాణం కల్లిన సదిశ లైతే ఆప్పుడు |ā – b̄|² + | b̄ – ē|² + | c̄ – ā|² కు ఎగువ బద్ధ విలువలలో ఉత్తమమైనది (1) 93 ₋ (2) 97 (3) 87 (4) 90
- 76. The angle between the lines $\vec{r} = (2\vec{i} 3\vec{j} + \vec{k}) + \lambda(\vec{i} + 4\vec{j} + 3\vec{k})$ and $\vec{r} = (\vec{i} \vec{j} + 2\vec{k}) + \mu(\vec{i} + 2\vec{j} 3\vec{k})$ is పరళరేఖలు $\overline{\mathbf{r}} = (2\overline{\mathbf{i}} - 3\overline{\mathbf{j}} + \overline{\mathbf{k}}) + \lambda(\overline{\mathbf{i}} + 4\overline{\mathbf{j}} + 3\overline{\mathbf{k}}), \ \overline{\mathbf{r}} = (\overline{\mathbf{i}} - \overline{\mathbf{j}} + 2\overline{\mathbf{k}}) + \mu(\overline{\mathbf{i}} + 2\overline{\mathbf{j}} - 3\overline{\mathbf{k}})$ ల మధ్యకోణం (2) $\cos^{-1}\left(\frac{9}{\sqrt{91}}\right)$ (1) $\frac{\pi}{2}$ (3) $\cos^{-1}\left(\frac{7}{\sqrt{84}}\right)$ (4) $\frac{\pi}{3}$ 77. If \overline{a} , \overline{b} and \overline{c} are non-coplanar vectors and if \overline{d} is such that $\overline{d} = \frac{1}{v}(\overline{a} + \overline{b} + \overline{c})$ and $\overline{a} = \frac{1}{v}(\overline{b} + \overline{c} + \overline{d})$ where x and y are non-zero real numbers, then $\frac{1}{xv}(\overline{a} + \overline{b} + \overline{c} + \overline{d}) =$ $\overline{a}, \overline{b}, \overline{c} \in \mathbb{N}$ సతల్యాలు కాన్ సదశలు అవుతూ, \overline{d} అనేది $\overline{d} = \frac{1}{x}(\overline{a} + \overline{b} + \overline{c}), \overline{a} = \frac{1}{y}(\overline{b} + \overline{c} + \overline{d})$
 - అయ్యేట్లు ఉంటే (ఇందులో x, y లు సున్న కాని వాస్తవ సంఖ్యలు) అప్పుడు $\frac{1}{xv}(\overline{a}+\overline{b}+\overline{c}+\overline{d})=$ (2) – ä 37 (3) 0

(4) 2ā

78. Three non-zero non-collinear vectors $\overline{a}, \overline{b}, \overline{c}$ are such that $\overline{a} + 3\overline{b}$ is collinear with \overline{c} , while $3\overline{b}+2\overline{c}$ is collinear with \overline{a} . Then $\overline{a}+3\overline{b}+2\overline{c}=$ సరేభీయాలుకాని మూడు శూనే్యతర సదిశలు $\overline{a}, \overline{b}, \overline{c}$ లు $\overline{a}+3\overline{b}$ సదిశ \overline{c} కి సరేభీయంగానూ, $3\overline{b}+2\overline{c}$ సదిశ \overline{a} కి సరేభీయంగానూ ఉండేట్లున్నాయి. అప్పుడు $\overline{a}+3\overline{b}+2\overline{c} =$ (1) $\overline{0}$ (2) $2\overline{a}$ (3) $3\overline{b}$ (4) $4\overline{c}$

79. If in a triangle ABC, $r_1 = 2$, $r_2 = 3$ and $r_3 = 6$ then a =ఒక චූචිభාజం ABCలో $r_1 = 2$, $r_2 = 3$, $r_3 = 6$ මංගාවේ මහිටාడා a =_(1) 4 (2) 1 (3) 2 (4) 3

80. If the angles of a triangle are in the ratio 1 : 1 : 4 then the ratio of the perimeter of the triangle to its largest side is

ఒక త్రభుజములోని కోణాలు 1:1:4 నిష్పత్తిలో ఉంటే అప్పుడు ఆ త్రభుజపు చుట్టు కొలతకు, దాని అతి పెద్ద భుజానికి గల నిష్పత్తి

(1) $\sqrt{2} + 2:\sqrt{3}$ (3) $\sqrt{3} + 2:\sqrt{2}$ (4) $\sqrt{3} + 2:\sqrt{3}$

81. A closed pipe is suddenly opened and changed to an open pipe of same length. The fundamental frequency of the resulting open pipe is less than that of 3rd harmonic of the earlier closed pipe by 55 Hz. Then, the value of fundamental frequency of the closed pipe is

ఒక మూసిన గొట్టం హఠాత్తగా తెరవబడి, అదే పొడవు గల తెరచిన గొట్టంగా మార్చబడింది. ఫల్తంగా తెరచిన గొట్టం యొక్క ప్రాథమిక పొనఃపున్యం. ముందర మూసిన స్థితిలో వున్న గొట్టం యొక్క 3వ అనుస్వరం కంటే 55 Hz తక్కువగా ఉంది. అప్పుడు మూసిన గొట్టం యొక్క ప్రాథమిక పొనఃపున్యం యొక్క విలువ

- (1) 165 Hz (2) 110 Hz
- (3) 55 Hz (4) 220 Hz

82. A convex lens has its radii of curvature equal. The focal length of the lens is f. If it is divided vertically into two identical plano-convex lenses by cutting it, then the focal length of the plano-convex lens is (μ = the refractive index of the material of the lens)

ఒక కుంభాకార కటకం యొక్క వక్రతా వ్యాసార్థాలు సమానము. కటక నాభ్యంతరము f. ఈ కటకాన్ని సరిగ్గా రెండు సర్వసమానమైన సమతల కుంభాకర కటకములుగా ఏర్పడేట్లు నిట్టనిలువుగా చిల్చబడితే, అప్పుడు క్రొత్త సమతల కుంభాకార కటకం యొక్క నాభ్యంతరము (μ = కటక పదార్థం యొక్క వక్రీభవన గుణకం)

(1) f (2)
$$\frac{f}{2}$$

Rough Work

(3) 2f

1, 2

(4) $(\mu - 1)f$

83. A thin converging lens of focal length f = 25 cm forms the image of an object on a screen placed at a distance of 75 cm from the lens. The screen is moved closer to the lens by a distance of 25 cm. The distance through which the object has to be shifted so that its image on the screen is sharp again is

(3) 12.5 cm (4) 13.5 cm

f = 25 cm నాభ్యంతరమున్న ఒక పలుచని అభిసారిక కటకము దానికి 75ె సం.మీ. దూరంలో వృన్న తెర మీద ఒక వస్తువు యొక్క (పతి బింబము ఏర్పరుస్తుంది. తరువాత తెరను కటకానికి దగ్గర అయ్యేటట్లు 25ె సం.మీ. జరపబడినది. ఆ తెర మీద (పతిబింబము మళ్ళీ నిశితంగా వుండడానికి వస్తువును జరపవలిసిన దూరం (1) 37.5ె సం.మీ. (2) 16.25ె సం.మీ.

(3) 12.5 పెం.మీ. (4) 13.5 పెం.మీ.

84. In a double slit interference experiment, the fringe width obtained with a light of wavelength 5900 Å was 1.2 mm for parallel narrow slits placed 2 mm apart. In this arrangement, if the slit separation is increased by one-and-half times the previous value, then the fringe width is

ఒక జంది చీలిక వ్యతికరణ ప్రయోగంలో సమాంతర సన్నని చిలికల మధ్య ఎడం 2 మి.మీ ఉన్నప్పుడు 5900 Å తరంగడైర్హ్యం గల కాంతితో పొందిన పట్టీ వెడల్పు 1.2 మి.మీ. ఈ ఏర్పాటులో, చిలికల మధ్య ఎడంను ముందున్న విలువకు ఒకటిన్నర రెట్లకు పెంచితే, అప్పుడు పట్టీ వెడల్పు (1) 0.9 mm (2) 0.8 mm

(3) 1.8 mm

(4) 1.6 mm

85. A charge Q is divided into two charges q and Q – q. The value of q such that the force between them is maximum, is

ఒక విద్యుత్ ఆవేశము Q రెండు విద్యుత్ ఆవేశములు q మరియు Q – q గా విభజింపబడినది. ఈ రెండిటి మధ్య బలం గరిష్ఠముగా ఉండుటకు. విద్యుత్ ఆవేశము q యొక్క విలువ

(1) Q (2) $\frac{3Q}{4}$

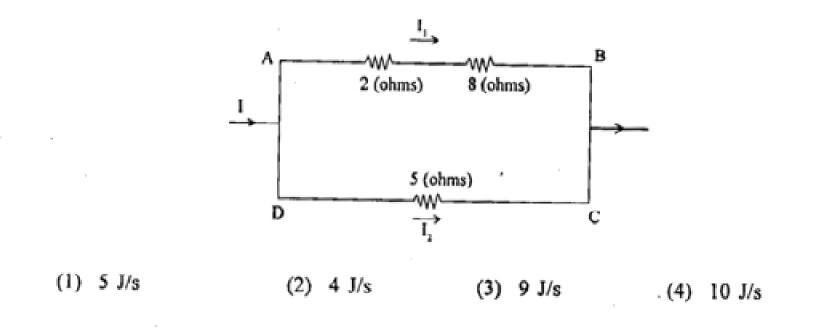
(3)
$$\frac{Q}{2}$$
 (4) $\frac{Q}{3}$

86. Two concentric hollow spherical shells have radii r and R (R » r). A charge Q is distributed on them such that the surface charge densities are equal. The electric potential at the centre is

ఒకే కేంద్రము కలిగిన రెండు గుల్ల గోళాకార కర్పరముల వ్యాసార్థములు r మరియు R (R » r). వాటిపై ఉపరితల ఆవేశ సాంద్రత సమానంగా ఉండేటట్లు, Q ఆవేశము వితరణము చేయబడినది. అప్పుడు, కేంద్రము వద్ద విద్యుత్ పొటన్నియల్.

(1)
$$\frac{Q(R+r)}{4\pi\epsilon_{o}(R^{2}+r^{2})}$$
 (2) $\frac{Q(R^{2}+r^{2})}{4\pi\epsilon_{o}(R'+r)}$

(3) $\frac{Q}{R+r}$ (4) 0



87. Wires A and B have resistivities ρ_A and ρ_B , ($\rho_B = 2\rho_A$) and have lengths ℓ_A and ℓ_B . If the diameter of the wire B is twice that of A and the two wires have same resistance, then $\frac{\ell_B}{\ell_A}$ is పాడవులు ℓ_A , ℓ_B గల తీగలు A మరియు B ల నిరోధకతలు ρ_A , ρ_B , ($\rho_B = 2\rho_A$). B తీగ

వ్యాసము A తీగ వ్యాసమువకు రెట్టింపు వురియు రెండు తీగల నిరోధములు సమానమైతే, అస్పుడు $rac{\ell_B}{\ell_A}$ విలువ . (1) 2 . (2) 1 . (3) 1/2 . (4) 1/4

88. In the circuit shown, the heat produced in 5 ohms resistance due to current through it is 50 J/s. Then the heat generated/second in 2 ohms resistance is

దిగువ చూపబడిన వలయంలో, విద్యుత్ (పవాహము వలన 5 ఓమ్స్ నిరోధకం ద్వారా ఉత్పర్తి అయిన ఉష్ణము 50 జౌల్స్/సె అయినచో, పెకనులో 2 ఓమ్స్ ద్వారా ఉత్పర్తి అయిన ఉష్ణము

Rough Work

29 Q

89. A steady current flows in a long wire. It is bent into a circular loop of one turn and the magnetic field at the centre of the coil is B. If the same wire is bent into a circular loop of n turns, the magnetic field at the centre of the coil is

ఒక పొడవైన తీగలో నిలకడైన విద్యుత్ బ్రవహిస్తోంది. ఆ తీగ ఏక చుట్ట వృతాకార లూప్గా పంచబడినది. దాని కేంద్రము వద్ద అయస్కాంత క్షేతం విలువ B. అదే తీగవు n చుట్టులు గల వృత్తాకారపు లూప్గా మలచిన, దాని కేంద్రము వద్ద ఏర్పడే అయస్కాంత క్షేతం

- (1) B/n (2) nB (3) nB^2 (4) n^2B
- 90. An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity V. Then, it travels
 - (1) in a straight line without acceleration
 - (2) with force in the direction of the field
 - (3) in a circular path with a radius directly proportional to V^2
 - (4) in a circular path with a radius directly proportional to its velocity

విద్యుదావేశితము చేయబడిన ఒక కణము ఒక ఏకరీతి అయస్కాంత [ేపరణ క్రేతంలోకి క్రేత దిశకు లంబదిశలో V వేగంతో (పవేశించి, (పయాణిస్తుంటే అది

- (1) త్వరణం లేకుండా సరళ రేఖలో (పయాణిస్తుంది
- (2) క్షేత దశలో బలంతో స్థారి పుంది
- (3) వ్యాసార్థం V^2 కి అనులో మానుపాతంలో వుండే వృత్తాకార మార్గంలో (పయాణిస్తుంది
- (4) వ్యాసార్థం వేగానికి అనులోమానుపాతంలో వుండే వృత్తాకార మార్గంలో (పయాణిస్తుంది

91. At a certain place, the angle of dip is 60° and the horizontal component of earth's magnetic field (B_H) is 0.8 × 10⁻⁴ T. The earth's overall magnetic field is

ఒకానొక స్థలంలో, డిప్ కోణం 60° మరియు భూ అయస్కాంత క్షితిజ సమాంతర బలాంశము (B_H) 0.8 × 10⁻⁴ T అయిన భూ అయస్కాంత మొత్తం క్షేతము (1) 1.5 × 10⁻⁴ T (2) 1.6 × 10⁻³ T (3) 1.5 × 10⁻³ T (4) 1.6 × 10⁻⁴ T

92. A coil of wire of radius r has 600 turns and a self inductance of 108 mH. The self inductance of a coil with same radius and 500 turns is

r వ్యాసార్థము, 600 చుట్టులు కలిగిన, ఒక తీగ చుట్ట యొక్క స్వయం ్పేరకత 108 mH. అదే వ్యాసార్థంకల వురొక తీగ చుట్టలో 500 చుట్టులు యున్న దాని స్వయం ్పేరకత (1) 80 mH (2) 75 mH (3) 108 mH (4) 90 mH

93. A capacitor 50 μ F is connected to a power source V = 220 sin 50 t (V in volt, t in second). The value of rms current (in Amperes) V = 220 sin 50 t (V పోల్డులలో, t ెంకనులలో) పవర్ జనకానికి 50 μ F కల కెపాసిటర్ సంధానము చేయబడినది. అయిన వర్గ మధ్య వర్గ మూలం (rms) విద్యుత్ ప్రవాహం విలువ (అంపియర్లలో)

(1)	0.55	(2)	0.55 A
(3)	$\sqrt{2}$, (4)	$\frac{(0.55)}{\sqrt{2}}$ A

Rough Work

94. The electric field for an electromagnetic wave in free space is $\vec{E} = \vec{i} 30 \cos(kz - 5 \times 10^8 t)$ where magnitude of E is in V/m. The magnitude of wave vector, k is (velocity of em wave in free space = 3×10^8 m/s)

్స్వేచ్ఛారో దోసలో ఒక విద్యుదయాస్కాంత తరంగంకు విద్యుత్ క్షేత్రం $\vec{E} = \vec{i} 30 \cos (kz - 5 \times 10^8 t)$, E పరిమాణం పోల్డు/మీటరులలో వుంటే, తరంగ పదిశ యొక్క k విలువ (స్వేచ్ఛారో దోసలో విద్యుదయాస్కాంత తరంగ పేగం = 3 × 10⁸ m/s)

- (1) 0.46 rad m^{-1} (2) 3 rad m^{-1}
- (3) 1.66 rad m^{-1} (4) 0.83 rad m^{-1}
- 95. The energy of a photon is equal to the kinetic energy of a proton. If λ_1 is the de Broglic wavelength of a proton, λ_2 the wavelength associated with the photon, and if the energy of the photon is E, then (λ_1/λ_2) is proportional to

ఫొటాన్ యొక్క శక్తి ఒక పొటాన్ యొక్క గతిజశక్తికి సమానము. పొటాన్ యొక్క డిబోగ్ల తరంగడైర్యం λ₁, ఫొటాన్ యొక్క తరంగడైర్యం λ₂ మరియు, ఫోటాను యొక్క శక్తి Ε అయితే (λ₁/λ₂) అనుపొతంలో ఉండేది

- (1) E^4 (2) $E^{1/2}$
- (3) E^2 (4) E

96. The radius of the first orbit of hydrogen is r_H, and the energy in the ground state is -13.6 eV. Considering a μ⁻-particle with a mass 207 m_e revolving round a proton as in Hydrogen atom, the energy and radius of proton and μ⁻ combination respectively in the first orbit are (assume nucleus to be stationary)

ైహెడోజన్ యొక్క మొదటి కక్షా్యవ్యాసార్థం r_H, మరియు భూస్తాయిలో శక్తి -13.6 eV. హైడోజన్ పరమాణువులోలాగ ఒక టొటాన్ చుట్టూ 207 m్డ దవ్యరాశ్ పున్న ఒక µా కణం పరిభమిస్తున్నట్లు అనుకొంటే, మొదటి కక్ష్యలో టొటాన్-µా సంయోగపు శక్తి, వ్యాసార్థం వరుసగా (కేందరము స్థిరముగా ఉన్నదనుకొనండి)

- (1) $-13.6 \times 207 \text{ eV}, \frac{r_{\text{H}}}{207}$ (2) $-207 \times 13.6 \text{ eV}, 207 r_{\text{H}}$ (3) $\frac{-13.6}{207} \text{ eV}, \frac{r_{\text{H}}}{207}$ (4) $\frac{-13.6}{207} \text{ eV}, 207 r_{\text{H}}$
- 97. If the radius of a nucleus with mass number 125 is 1.5 Fermi, then radius of a nucleus with mass number 64 is

125 ద్రవ్యరాశ్ సంఖ్య గల కేంద్రకం వ్యాసార్థం 1.5 ఫెర్మి అయితే, 64 ద్రవ్యరాశ్ సంఖ్యగల కేంద్రక వ్యాసార్థం

- , (1) 0.48 Fermi (2) 0.96 Fermi (3) 1.92 Fermi (4) 1.2 Fermi
- 98. A crystal of intrinsic silicon at room temperature has a carrier concentration of 1.6 × 10¹⁶/m³. If the donor concentration level is 4.8 × 10²⁰/m³, then the concentration of holes in the semiconductor is

గద్ ఉష్ణోగ్రత వద్ద ఒక స్వభావజ స్రీలెకాస్ స్పటికము 1.6 × 10¹⁶/m³ వాహకగాథత కల్గివుంది. దాత యొకక్త గాథతస్థాయి 4.8 × 10²⁰/m³ అయితే, అర్ధవాహకంలో రంధాల యొక్క గాథత

(1)
$$53 \times 10^{12}/\text{m}^3$$
 (2) $4 \times 10^{11}/\text{m}^3$ (3) $4 \times 10^{12}/\text{m}^3$ (4) $5.3 \times 10^{11}/\text{m}^3$

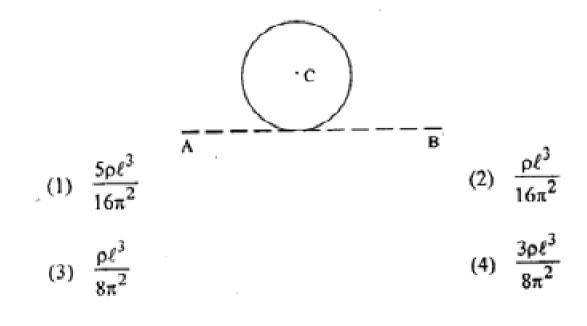
- 99. The output characteristics of an n-p-n transistor represent, [I_C = Collector current, V_{CE} = potential difference between collector and emitter, I_B = Base current, V_{BB} = voltage given to base; V_{BE} = the potential difference between base and emitter]
 - (1) Change in I_C as I_B and V_{BB} are changed
 - (2) Changes in I_C with changes in V_{CE} (I_B = constant)
 - (3) Changes in I_B with changes in V_{CE}
 - (4) Change in I_C as V_{BE} is changed

ఒక n-p-n టాన్సిఫ్టర్ యొక్క నిర్గమ లక్షణాలు సూచించేధి [I_C = సేకరణి (పవాహం, V_{CE} = సేకరణి-ఉద్దారకం వుధ్య పొటన్నియుల్ భేదం. I_B = ఆధార విద్యుత్ (పవాహం, V_{BB} = ఆధారంకి ఇచ్చే పోల్దేజి; V_{BE} = ఆధారంకి ఉద్దారకం మధ్య పొటెన్నియుల్ భేదం]

- (1) I_B మరియు V_{BB} లలో మార్పులు చేస్తున్నపుడు I_C లో మార్పులు
- (2) V_{CE} మార్పు చేస్తున్నపుడు I_{C} లో మార్పులు ($I_{B} = {}^{\circ}_{N} \sigma_{O}$)
- (3) V_{CE} మార్పు చేస్తున్నపుడు I_{B} లో మార్పులు
- (4) V_{BE} మార్పు చేస్తున్నపుడు I_{C} లో మార్పులు

100. A T.V transmitting Antenna is 128 m tall. If the receiving Antenna is at the ground level, the maximum distance between them for satisfactory communication in L.O.S. mode is, (Radius of the earth = 6.4×10^6 m)

ఒక T.V సంకేతాలను ప్రసారం చేసే ప్రసార ఆంటీనా ఎత్తు 128 m. గ్రాహక ఆంటీనా భూస్థాయిలో ఉంటే, దృష్టి రేఖా పద్ధతిలో రెండింటి మధ్య సంతృప్తికరమైన ప్రసారం కోసం, ఆ రెండింటి మధ్య ఉండపలసిన గరిష్ట దూరము (భూమి వ్యాసార్థం = 6.4 × 10⁶ m) . (1) $64 \times \sqrt{10} \text{ km}$ (2) $\frac{128}{\sqrt{10}} \text{ km}$ (3) $128 \times \sqrt{10} \text{ km}$ (4) $\frac{64}{\sqrt{10}} \text{ km}$



101. A wheel which is initially at rest is subjected to a constant angular acceleration about its axis. It rotates through an angle of 15° in time t sees. The increase in angle through which it rotates in the next 2t sees is

నిశ్చల స్థితిలో నున్న ఒక చక్రము దాని అక్షము పరంగా స్థిరమైన కోణీయ త్వరణమునకు ప్రభావితము చేయబడినది. అది tెంకనులలో 15° కోణం ద్వారా భామణము చేసినది. తరువాతి 2tెంకనులలో అది భామణము చేసినప్పుడు పెరిగిన కోణము (1) 90° (2) 120° (3) 30° (4) 45°

102. A thin wire of length *l* having linear density p is bent into a circular loop with C as its centre, as shown in figure. The moment of inertia of the loop about the line AB is

పటములో చూపినట్లు, పొడవు· Ι మరియు రేభీయు సాంద్రత ρగల ఒక సన్నటి తీగను C కేంద్రముగా గల వృత్తముగా వంచబడినది. AB రేఖ వెంబడి దాని జడత్వ భామకము

- 103. The ratio between kinetic and potential energies of a body executing simple harmonic motion, when it is at a distance of $\frac{1}{N}$ of its amplitude from the mean position is
 - సమతాస్థితి స్థానం నుండి కంపన పరిమితిలో $\frac{1}{N}$ వంతు దూరంలో ఉన్నప్పుడు, సరళ పారాత్మక చలనం చేసే ఒక వస్తువు యొక్క గతిజ, స్థితిజ శక్తుల నిష్పత్తి (1) $N^2 + 1$ (2) $\frac{1}{N^2}$ (3) N^2 (4) $N^2 - 1$
- 104. A satellite is revolving very close to a planet of density ρ. The period of revolution of satellite is

ρ సాందత గల ఒక గోహము చుట్టూ చాలా దగ్గరలో ఒక ఉప్పగహము భామణం చేస్తోంది. అయినచో ఆ ఉప్పగహము యొక్క ఆవర్తన కాలము

(1)
$$\sqrt{\frac{3\pi\rho}{G}}$$
 (2) $\sqrt{\frac{3\pi}{2\rho G}}$

(3)
$$\sqrt{\frac{3\pi}{\rho G}}$$
 (4) $\sqrt{\frac{3\pi G}{\rho}}$

105. Two wires of the same material and length but diameters in the ratio 1 : 2 are stretched by the same force. The elastic potential energy per unit volume for the two wires when stretched by the same force will be in the ratio

ఒకే పదార్థముతో చేయబడి మరియు ఒకే పొడవు కలిగి, కానీ వాటి వ్యాసములు 1:2నిష్పర్తిలో గల రెండు తీగలు ఒకే బలంతో సాగదీయబడినవి. ఒకే బలముతో సాగతీసినప్పుడు ఆ రెండు తీగలలో స్థామాణ ఘన పరిమాణానికి గల స్థితి స్థాపక స్థితిజశక్తుల నిష్పర్తి (1) 16:1 (2) 1:1 (3) 2:1 (4) 4:1

106. When a big drop of water is formed from n small drops of water, the energy loss is 3E, where E is the energy of the bigger drop. If R is the radius of the bigger drop and r is the radius of the smaller drop, then number of smaller drops (n) is

n చిన్న నీటి బిందువులు కలిసి ఒక ొంద్ద బిందువు ఏరపడినప్పుడు శక్తి నష్టము 3E. ఇక్కడ E ొంద్ద నీటి బిందువు శక్తి. ొంద్ద నీటి బిందువు యొక్క వ్యాసార్థము R, చిన్న నీటి బిందువు వ్యాసార్థము r అయితే, అప్పుడు చిన్న నీటి బిందువుల సంఖ్య (n)

(1) $\frac{4R}{r^2}$ (2) $\frac{4R}{r}$ (3) $\frac{2R^2}{r}$ (4) $\frac{4R^2}{r^2}$

107. A steam at 100°C is passed into 1 kg of water contained in a calorimeter of water equivalent 0.2 kg at 9°C, till the temperature of the calorimeter and water in it is increased to 90°C. The mass of steam condensed in kg is nearly (sp. heat of water = 1 cal/g-°C, Latent heat of vaporisation = 540 cal/g)

100°C ఉష్ణోగత గల నీటి ఆవిరిని 0.2 కి.గా జల తుల్యాంకము, 9°C ఉష్ణోగత గల కెలోరి మీటర్లో ఉన్న 1 కి.గా ద్రవ్యరాశి గల నీటిలోనికి, కెలోరిమీటర్ దానిలోని నీటి ఉష్ణోగత 90°Cకు పెరిగే వరకు పంపబడినది. ద్రవీభవనం చెందిన నీటి ఆవిరి యొక్క ద్రవ్యరాశి కి.గాలలో దాదాపుగా (నీటి విశిష్టోష్టవుు = 1 కెలోరి/గా-°C, నీటి భాష్పభవన గుప్తోష్టము = 540 కెలోరి/గా) (1) 0.81 (2) 0.18 (3) 0.27 (4) 0.54

ふ

108. A very small hole in an electric furnace is used for heating metals. The hole nearly acts as a black body. The area of the hole is 200 mm². To keep a metal at 727°C, heat energy flowing through this hole per sec, in joules is ($\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2}\text{k}^{-4}$)

ఒక విద్యుత్ కొలిమిలో ఒక చెన్న రండ్రాన్ని లోహాలను వేడి చేయటానికి వాడుతారు. ఆ రంద్రము దాదాపుగా కృష్ణ వస్తువుగా పనిచేస్తుంది. ఆ రండ్రపు వైశాల్యము 200 mm². ఒక లోహాన్ని 727°C ఉష్ణోగత వద్ద ఉంచటానికి ఆ రంద్రము గుండా ఒక పెకనులో (పవహించే ఉష్ణశక్తి జౌల్స్లో (σ = 5.67 × 10⁻⁸ Wm⁻²k⁻⁴)

(1) 22.68 (2) 2.268 (3) 1.134 (4) 11.34

109. Five moles of Hydrogen initially at STP is compressed adiabatically so that its temperature becomes 673 K. The increase in internal energy of the gas, in Kilo Joules is

(R = 8.3 J/mole-K; γ = 1.4 for diatomic gas)

తొలుత STP వద్ద ఉన్న ఐదు మోల్స్ హైడ్జ్ జన్ను స్థిరోష్ణక (పథ్రియ ద్వారా దానీ ఉష్ణోగత 673 K అయోటట్లు సంపీథనం చేయుబడినది. ఆ వాయువు అంతర్గత శక్తిలో పెరుగుదల, కిలో జౌల్స్లో, (R = 8.3 J/mole-K; γ = 1.4 ద్విపరమాణు వాయువుకు)

(1) 80.5 (2) 21.55 (3) 41.50 (4) 65.55

110. The volume of one mole of the gas is changed from V to 2 V at constant pressure P. If γ is the ratio of specific heats of the gas, change in internal energy of the gas is

ఒక మోల్ వాయువు యొక్క ఘన పరిమాణం, Ρిస్థిర ప్రదనం వద్ద, V నుంచి 2Vకి మార్చబడినది. వాయువు యొక్క విశిష్టోష్ఠముల నిష్పత్తి γ అయితే, ఆ వాయువు అంతర్గత శక్తిలో మార్పు

(1)
$$\frac{\mathbf{r} \cdot \mathbf{PV}}{\gamma - 1}$$
 (2) $\frac{\mathbf{R}}{\gamma - 1}$ (3) \mathbf{PV} (4) $\frac{\mathbf{PV}}{\gamma - 1}$

111. A bus moving on a level road with a velocity V can be stopped at a distance of x, by the application of a retarding force F. The load on the bus is increased by 25% by boarding the passengers. Now, if the bus is moving with the same speed and if the same retarding force is applied, the distance travelled by the bus before it stops is,

సమతలంగా ఉండే ఒక రోడ్డు సైవ V వేగముతో చలిస్తున్న బస్సును మందిత బలము F ను ప్రయోగించి x దూరంలో ఆపవచ్చును. ప్రయాణీకులను ఎక్కించుటవలన బస్సుపై భారము 25% పెరిగినది. ఇప్పుడు బస్సు అదే వేగముతో కదులుతూ మరియు అదే మందిత బలాన్ని ప్రయోగిస్తే, ఆ బస్సు ఆగుటకు ముందు ప్రయాణించే దూరము

(1) 1.25x (2) x (3) 5x (4) 2.5x

112. A cannon shell fired breaks into two equal parts at its highest point. One part retraces the path to the cannon with kinetic energy E₁ and kinetic energy of the second part is E₂. Relation between E₁ and E₂ is

ేపల్చబడిన ఒక ఫిరంగు గుండు దాని గరిష్ఠ ఎత్తు బిందువు వద్ద రెండు సమాన భాగములుగా విడిపోయినది. E₁ గతిజశక్తితో ఒక భాగము వెనుతిరిగి అదే మార్గంలో ఫిరంగిని చేరినది. రెండవ భాగము గతిజశక్తి E₂. E₁ మరియు E₂ల మధ్య సంబంధము

(1) $E_2 = 15E_1$ (2) $E_2 = E_1$ (3) $E_2 = 4E_1$ (4) $E_2 = 9E_1$

113. The force required to move a body up a rough inclined plane is double the force required to prevent the body from sliding down the plane. The coefficient of friction when the angle of inclination of the plane is 60° is

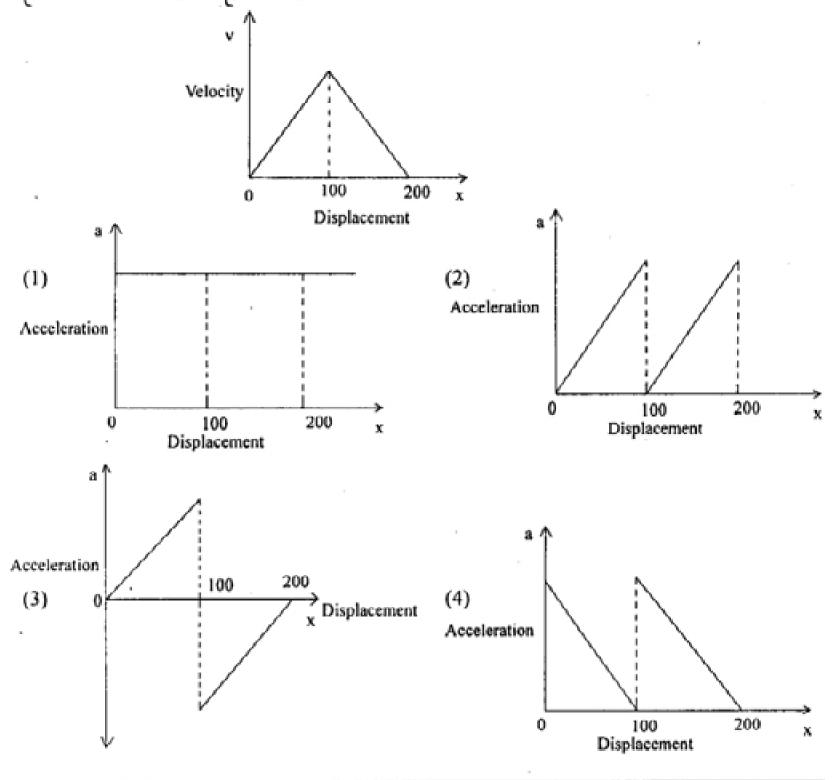
ఒక గరుకు వాలు తలము యొక్క కోణము 60°. దానిపై ఒక వస్తువును (కిందకు జారకుండా ఉండడానికి కావలిసిన బలము కంటే. పైకి జరుపుటకు కావలిసిన బలము రెట్టింపు అయితే ఆ వాలు తలముపై ఘర్షణ గుణకము

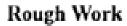
- (1) $\frac{1}{3}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{1}{2}$
- 114. A mass M kg is suspended by a weightless string. The horizontal force required to hold the mass at 60° with the vertical is
 - ఒక భార రహిత తీగకు M kg ద్రవ్యరాశి గల ఒక వస్తువును వేలాడదీశారు. ఆప్పుడు నిట్టనిలువుతో 60° కోణంలో ఆ ద్రవ్యరాశిని నిలపడానికి కావలసిన క్షితిజ సమాంతర బలం
 - (1) Mg
 (2) Mg√3
 Mg
 - (3) Mg $(\sqrt{3}+1)$ (4) $\frac{Mg}{\sqrt{3}}$

115. A body is projected at an angle θ so that its range is maximum. If T is the time of flight then the value of maximum range is (acceleration due to gravity = g)

జక వస్తువును θ కోణంతో గరిస్త వ్యాప్తి చెందునట్లు స్టక్షిప్రము చేయబడింది. ఆది గాలిలో ఉండే మొత్తం కాలము T అయితే దాని గరిస్త వ్యాప్తి విలువ (గురుత్వ త్వరణము = g) (1) $\frac{g^2T}{2}$ (2) $\frac{gT}{2}$ (3) $\frac{gT^2}{2}$ (4) $\frac{g^2T^2}{2}$

116. The path of a projectile is given by the equation $y = ax - bx^2$, where a and b are constants and x and y are respectively horizontal and vertical distances of projectile from the point of projection. The maximum height attained by the projectile and the angle of projection are respectively


x మరియు yలు (పక్షేపక స్థానం నుండి వరుసగా (పక్షేపకము యొక్క క్షితిజ సమాంతర దశలో దూరము, నిట్టనిలువు దశలో దూరము అయితే ఒక (పక్షేపకం యొక్క పథం y = ax – bx² అనే సమీకరణము ద్వారా ఇవ్వబడినది. ఇందులో a, b లు స్థిరాంకములు. (పక్షేపకము చేరిన గరిష్ఠ ఎత్తు మరియు (పక్షేపక కోణములు పరుసగా


(1) $\frac{2a^2}{b}$, $\tan^{-1}(a)$ (2) $\frac{b^2}{2a}$, $\tan^{-1}(b)$ (3) $\frac{a^2}{b}$, $\tan^{-1}(2b)$ (4) $\frac{a^2}{4b}$, $\tan^{-1}(a)$

117. Velocity (v) versus displacement (x) plot of a body moving along a straight line is as shown in the graph. The corresponding plot of acceleration (a) as a function of displacement (x) is

రుజు మార్గంలో చెలిస్తున్న ఒక వస్తువు యొక్క వేగం (v) స్థాన బ్రాంశాల (x) మధ్య గీచిన వక్రం, పటంలో చూపిన విధముగా ఉంది. ఆ వస్తువు త్వరణం (a) దాని స్థానభంశాల (x) ప్రమేయుంగా గీచిన వక్రంను సూచించే పటం

118. A person walks along a straight road from his house to a market 2.5 kms away with a speed of 5 km/hr and instantly turns back and reaches his house with a speed of 7.5 kms/hr. The average speed of the person during the time interval 0 to 50 minutes is (in m/sec)

ఒక వ్యక్తి తెన్నని రోడ్డు వెంట తన ఇంటికి నుంచి 2.5 కి.మీ దూరాన ఉన్న మార్కెట్కు 5 కి.మీ/గం వేగంతో నడిచి వెంటనే వెనుతెరిగి ఇంటికి 7.5 కి.మీ/గం వేగంతో చేరాడు. 0 నుంచి 50 నిముషాల కాలవ్యవధిలో ఆతడి సగటు వేగం (మీ/ెనలలో)

(1)	$4\frac{2}{3}$	(2)	53
(3)	$\frac{5}{6}$	(4)	$\frac{1}{3}$

119. If C the velocity of light, h Planck's constant and G Gravitational constant are taken as fundamental quantities, then the dimensional formula of mass is

కాంతి వేగము C, ప్లాంక్ స్థిరాంకము h, మరియు గురుత్వాకర్షణ స్థిరాంకము Gలను ప్రాథమిక రాశులుగా తీసుకొంటే, అప్పుడు ద్రవ్యరాశికి మితి ఫార్ములా

- (2) $h^{1/2}C^{1/2}G^{-1/2}$ (1) $h^{-1/2}G^{-1/2}C^0$ (4) $h^{-1/2}C^{-1/2}G^{-1/2}$
- (3) h^{-1/2}C^{1/2}G^{-1/2}

120. Match the	following	(Take t	he rela	tive	strength	of	the	strongest	fundamental	forces	in
nature as c											

A	В
Fundamental forces in nature	Relative strength
(a) Strong nuclear force	(e) 10 ⁻²
(b) Weak nuclear force	(f) 1
(c) Electromagnetic force	(g) 10 ¹⁰
(d) Gravitational force	(h) 10 ⁻¹³
	(i) 10 ⁻³⁹
్రింది వాటిని జతపరచండి (ప్రకృతిలోని	(పౌథమిక బలాలలో అత్యంత అధికమైన బలము
యొుక్క సాపేక్ష సత్వము ఒకటిగా తీసుకి	
Α	В
ట్రకృతిలోని ట్రాథమిక బలాలు	సాేపక్ష సత్వము
(a) ప్రబల కేంద్రక బలము	(e) 10 ⁻²
(b) దుర్భల కేంద్రక బలము	(f) 1
(c) విద్యుదయస్కాంత బలము	(g) 10 ¹⁰
(d) గురుత్వాకర్షణ బలము	(h) 10 ⁻¹³
	(i) 10 ⁻³⁹
The correct match is :	
ఇది సరియొన జోడింపు :	
(1) (a)-(f), (b)-(i), (c)-(e), (d)-(h)	•
(2) (a)-(f), (b)-(h), (c)-(e), (d)-(h)	
(3) (a)-(f), (b)-(h), (c)-(e), (d)-(i)	
(4) (a)-(f), (b)-(e), (c)-(h), (d)-(i)	

Rough Work

. . . .

121. What is Z in the following reaction sequence ?

కింది చర్యా క్రమంలో Z ఏది? $\xrightarrow{(i) \text{ NaNO}_2 + \text{HCl/273 K}}_{(ii) \text{ H}_3\text{PO}_2 + \text{H}_2\text{O}} Z$ C₄H₁NH₂ (iii) CO, HCl; anhydrous AlCl3/CuCl అనార్గ్ర (4) C₆H₆ (3) C₆H₅CHO (2) C₆H₅OH (1) C₆H₅CO₂H 122. $H_3CMgBr + CO_2 \xrightarrow{Dry ether} Y \xrightarrow{H_3O^{\oplus}} Z$ Identify Z from the following : (2) Acetic acid (1) Ethyl acetate (4) Methyl acetate (3) Propanoic acid $H_3CMgBr + CO_2 \xrightarrow{\text{arg}} 4 4 4 5 Y \xrightarrow{H_3O^{\bigoplus}} Z$ డిందివాటి నుండి Z ను గుర్తింపుము : (2) ఎసిటిక్ ఆవ్రం (1) ఇథైల్ ఎస్టేట్ (4) మ్థైల్ ఎెస్టేట్ (3) బాపనోయిక్ ఆమ్రం

123. $\chi \xrightarrow{\gamma}$ Benzoquinone బెంబోక్వినోన్ Identify X and Y in the above reaction : ైల చర్యలో X మరియు Yలను గుర్తింపుము : х Y QН (1) Zn QН .(2) Na2Cr2O7/H2SO4 QН (3) $Na_2Cr_2O_7/H_2SO_4$ QН (4) Zn

ł

124.
$$C_6H_5 \rightarrow O \rightarrow CH_2CH_3 \rightarrow HI \rightarrow Y + Z$$

Identify Y and Z in the above reaction :

ైప చర్యలో	Y మరియు Zలను గుర్తింపుము
Y	z
(1) C ₆ H ₅ OH	н,ссн,
(2) C ₂ H ₅ I	C ₆ H ₅ CHO
(3) C ₆ H ₅ I	H3CCH2OH
(4) C ₆ H ₅ OI	H H ₃ CCH ₂ I

125. Which one of the following is more readily hydrolysed by S_N^1 mechanism ?

క్రింది వాటిలో ఏది S_N! చర్యా ఏధానం ద్వారా అతి సులభంగా జల విశ్లేషణ చెందుతుంది?

- (1) (C₆H₅)₂C(CH₃)Br
- (2) C₆H₅CH₂Br
- (3) C₆H₅CH(CH₃)Br
- (4) (C₆H₅)₂CHBr

126. What are the substances which mimic the natural chemical messengers ?

(1) Antibiotics
 (2) Antagonists
 (3) Agonists
 (4) Receptors
 సహజ రసాయన సమాచార వాహకాలను అనుకరణం చేసే పదార్థాలు ఏవి?
 (1) యాంటిబయాటిక్లు
 (2) అంతర్ విరుద్ధకాలు
 (3) అంతర్ సహాయకాలు
 (4) గ్రాహకాలు

128. Identify the copolymer from the following : [2 o 2

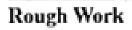
$\underline{\mathbb{A}}$

129. Match the following :

List-I

(A) sp³

- (B) dsp²
- (C) sp³d²
- (D) d²sp³


[కింది వాటిని జతపరుచుము : జా<mark>చితా I</mark> (A) sp³

(B) dsp²

- (C) sp3d2
- (D) d²sp³

The correct answer is :

ఇది సరియైన సమాధానం : (A) **(B)** (C) (D) (1) (III) (II) (IV) **(I)** (2) (V) (IV) (III) (II) (3) (II) (III) (IV) **(I)** (4) (II) (III) **(I)** (V)

List-II

(I) [Co(NH₃)₆]³⁺
 (II) [Ni(Co)₄]
 (III) [Pt(NH₃)₂Cl₂]
 (IV) [CoF₆]³⁻
 (V) [Fe(Co)₅]

జాచిరా II

(I) [Co(NH₃)₆]³⁺
 (II) [Ni(Co)₄]
 (III) [Pt(NH₃)₂Cl₂]
 (IV) [CoF₆]³⁻
 (V) [Fe(Co)₅]

h.

E 2014 D

130. Which one of the following ions has same number of unpaired electrons as those present in V^{3+} ion ? (కింది వాటిలో ఏ అయాన్లోని ఒంటరి ఎలక్ట్రావ్ల సంఖ్య, V^{3+} అయాన్లోని ఒంటరి ఎలక్ట్రావ్ల సంఖ్యకు సమానం? (1) Fe^{3+} (2) Ni^{2+} (3) Mn^{2+} (4) Cr^{3+}

131. The structure of $XeOF_4$ is

- (1) Trigonal bipyramidal
- (2) Square planar
- (3) Square pyramidal
- (4) Pyramidal
- XeOF₄ నిర్మాణము
- (1) త్రికోణ ఔపిరమీడల్
- (2) సమతల చతుర్గుం
- (3) చతుర్గస్ ప్రమీడల్
- (4) పిరమిడల్

\triangle

- 132. The charring of sugar takes place when treated with concentrated H₂SO₄. What is the type of reaction involved in it ?
 - (1) Dehydration reaction
 - (2) Hydrolysis reaction
 - (3) Addition reaction
 - (4) Disproportionation reaction

చకొందను గాఢ H₂SO4 తో చర్య జరిపినపుడు మాడిపోవును. ఇందులో ఇమిడి ఉన్న చర్య ఏది?

- (1) నిర్జలీకరణ చర్య
- (2) జల విశ్లేషణ చర్య
- (3) సంకలన చర్య
- (4) అననుపాత చర్య

133. What is the role of limestone during the extraction of iron from haematite ore ?

- (1) leaching agent
- (2) oxidizing agent
- (3) reducing agent
 - (4) flux

ేహమఔట్ ధాతువు నుండి ఇనుము నిష్కర్తణంలో సున్నపురాయి పాత్ర ఏమిటి?

- నిక్లాళన కారకం
- (2) පර්ාූජරිශ්
- (3) క్రయకరిణి
- (4) (దపకారి

135. The number of angular and radial nodes of 4d orbital respectively are

4d ఆర్బిటాల్,	కోణీయ	వురియు రే డియల్	నోడ్ ల	సంఖ్యలు	వరుసగా	
(1) 3, 1		(2) 1, 2	(3)	3, 0	(4) 2, 1	

136. The oxidation state and covalency of Al in $[AlCl(H_2O)_5]^{2+}$ are respectively $[AlCl(H_2O)_5]^{2+}$ හි Al බාජිද පර්දු පර්ශාවයි කරාතා කරාතාක්රියාන්තා කරාතා (1) +6, 6 (2) +3, 6 (3) +2, 6 (4) +3, 3

137. The increasing order of the atomic radius of Si, S, Na, Mg, Al is

Si, S, Na, Mg, Al ల పరమాణు వ్యాసార్థం పెరిగే క్రమం ఏది? . (1) S < Si < Al < Mg < Na (2) Na < Al < Mg < Si < Si (3) Na < Mg < Si < Al < S (4) Na < Mg < Al < Si < S

Rough Work

E 2014 D

52 Q

138. The number of electrons in the valence shell of the central atom of a molecule is 8. The molecule is

ఒక అణువులోని కేంద్రక పరమాణువు వేలన్స్ కర్ఫరంలో 8 ఎలక్ట్రామలున్నాయి. ఆ అణువు (1) BCl_3 (2) BeH_2 (3) SCl_2 (4) SF_6

139. Which one of the following has longest covalent bond distance ?

క్రింది వాటిలో	చేనికి ఆతి	దీర్ఘ మైన	సమయోజనీయ ఒ	ుంధ చైర్ల్యం	ఉంటుంది?
(1) C—C		(2) C—H	(3) C	-N (4) C0

140. The ratio of rates of diffusion of gases X and Y is 1 : 5 and that of Y and Z is 1 : 6. The ratio of rates of diffusion of Z and X is

X మరియు Y వాయువుల వ్యాపన రేట్ల నిష్పత్తి 1:5, Y మరియు Z వాయువుల వ్యాపనరేట్ల నిష్పత్తి 1:6. అయితే Z మరియు X వాయువుల వ్యాపన రేట్ల నిష్పత్తి(1) 1:30(2) 1:6(3) 30:1(4) 6:1

141. The molecular interactions responsible for hydrogen bonding in HF

(1) ion-induced dipole	(2) dipole-dipole
(3) dipole-induced dipole	(4) ion-dipole
HFలోని ైవాడ్రోజన్ బంధాలు ఏర్పడుటకు	కారణమగు ఆణు ఆకర్షణ బలాలు
(1) అయాన్ - (పరిత ద్విధువం	(2) ద్విధువం - ద్విధువం
(3) ద్విధువం - (పేరిత ద్విధువం	(4) అయాన్ - ద్విధువం

142. KMnO₄ reacts with KI in basic medium to form I₂ and MnO₂. When 250 mL of 0.1 M KI solution is mixed with 250 mL of 0.02 M KMnO₄ in basic medium, what is the number of moles of I₂ formed ?

KMnO4, KIతో క్షారయానకంలో చర్య జరిపి I2, MnO2లను ఏర్పరుస్తుంది. క్షారయానకంలో 250 mL ల 0.1 M KI ద్రావణాన్ని 250 mL ల 0.02 M KMnO4 ద్రావణానికి కలిపినపుడు చర్యలో ఏర్పడిన I2 మోల్ల సంఖ్య ఎంత?

(1) 0.015	(2)	0.0075
(3) 0.005	(4)	0.01

143. The oxide of a metal contains 40% of oxygen. The valency of metal is 2. What is the atomic weight of the metal ?

ఒక లోహ ఆర్పైడ్లో 40%, ఆర్పిజన్ కలదు. లోహ వెరెన్సీ 2. అయితే లోహ పరమాణు భారమెంత?

(1)	24	2 (2)	12
(3)	40	(4)	36

144. The temperature in K at which $\Delta G = 0$, for a given reaction with $\Delta H = -20.5 \text{ kJ mol}^{-1}$ and $\Delta S = -50.0 \text{ JK}^{-1} \text{ mol}^{-1}$ is

ఒక చర్యకు ΔH = -20.5 kJ mol⁻¹ పురియు ΔS = -50.0 JK⁻¹ mol⁻¹ అయితే ΔG = 0 అగు ఉష్ణోగత Kలో

- (1) -410 .(2) 410
- (3) 2.44 (4) -2.44

145. In a reaction A + B = C + D, 40% of B has reacted at equilibrium, when 1 mol of A was heated with 1 mol of B in a 10 litre closed vessel. The value of K_c is

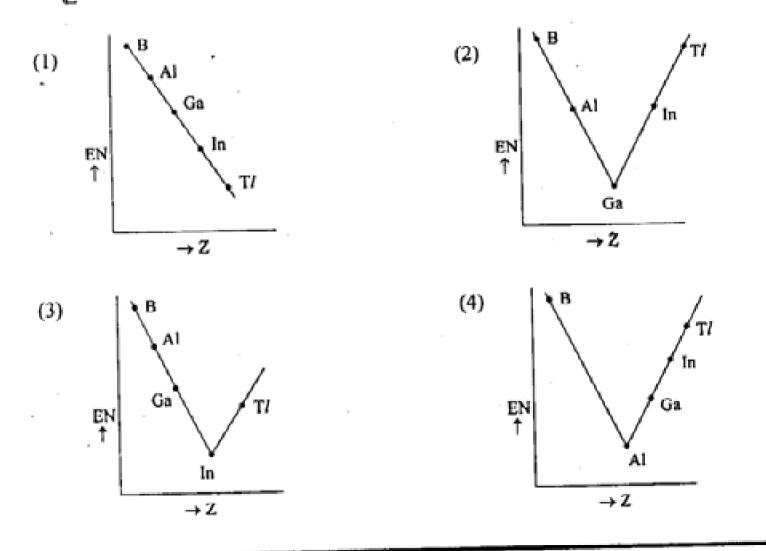
ఒక చర్య A + B == C + D లో, 10 లీటర్ల మూసిన పాత్రలో l mol A ను, l mol B లో వేడి చేయగా సమతా స్థిత్ వద్ద 40% B చర్య సొందినది. K్ధ విలువ (1) 0.44 (2) 0.18 (3) 0.22 (4) 0.36

146. If the ionic product of Ni(OH)₂ is 1.9 × 10⁻¹⁵, the molar solubility of Ni(OH)₂ in 1.0 M NaOH is

Ni(OH)2 అయానిక్ లబ్దం 1.9 × 10⁻¹⁵ అయిన 1.0 M NaOH దావణంలో Ni(OH)2 మోలార్ దావణీయత

(1) $1.9 \times 10^{-18} \text{ M}$	(2) 1.9 × 10 ⁻¹³ M
(3) 1.9 × 10 ⁻¹⁵ M	(4) 1.9×10^{-14} M

147. Temporary hardness of water is removed in Clark's process by adding .


(1) Caustic Soda
 (2) Calgon
 (3) Borax
 (4) Lime
 క్లార్క్ పద్ధతిలో నీటి తాత్కాలిక కాఠివ్యతమ తొలగించడానికి కలుపునది
 (1) కాస్టిక్ సోడా
 (2) కాల్గన్
 (3) బోరాక్స్
 (4) పున్నం

148. KO₂ exhibits paramagnetic behaviour. This is due to the paramagnetic nature of _____. KO₂ పరా అయస్కాంత ధర్మాన్ని ప్రదర్శిమ్తంది. దీనికి కారణం, _____ పరా అయస్కాంత స్వభావం. (1) KO⁻ (2) K⁺ (3) O₂ (4) O₂⁻

149. Which one of the following correctly represents the variation of electronegativity (EN) with atomic number (Z) of group 13 elements ?

(గూపు 13 మూలకాల పరమాణు సంఖ్య (Z)తో రుణవిద్యుదాత్మకత (EN) మార్పును తెలిపే సరియైనది ఏది?

150. Which one of the following elements reacts with steam ?

l [§] ంది మూలకాలలో	నీటి	ఆవిరితో	చర్య	హిందేది	ఎది ?	
(1) C				(2)	Ge	
(3) Si				(4)	Sn	

151. What are X and Y in the following reaction ?

CF₂Cl₂
$$\xrightarrow{uv} X + Y$$

န္ခံဝင်္ထ သံတိန္ဆိုပ်ိဳ X ဆံစစိတိသ Y ေခ်ာ?
CF₂Cl₂ $\xrightarrow{uv} X + Y$
(1) $\dot{C}F_2Cl, C\dot{l}$ (2) C_2F_4 , Cl_2 (3) $\dot{C}FCl_2$, \dot{F} (4) $:CCl_2$, F_2

152. What are the shapes of ethyne and methane ?

- squarc planar and linear
- (2) tetrahedral and trigonal planar
- (3) linear and tetrahedral
- (4) trigonal planar and linear

ఈథైన్ మరియు మీథేన్ యొక్క ఆకృతులు ఏవి?

- (1) చతురౖస సమతలం మరియు రేఖీయుం
- (2) చతుర్ముఖీయం మరియు (తెకోణ సమతలం
- (3) రేఖీయం మరియు చతుర్ముఖీయం
- (4) త్రికోణ సమతలం మరియు రేఖీయం

153. What is Z in the following reaction ?

 $CH_3 - CH_2 - CO_2^{\Theta}Na^{\oplus} - \frac{NaOH/CaO}{\Delta} \rightarrow Z$ (1) propane (2) n-butane (3) ethane (4) ethyne දිටෙඩ ප්රදිවේ Z වියි? $CH_3 - CH_2 - CO_2^{\Theta}Na^{\oplus} - \frac{NaOH/CaO}{\Delta} \rightarrow Z$ (1) දුව් විඩි (2) n-బ్యూ బేస్ (3) ණැಫేస్ (4) ණැಫైస్

154. Which one of the following gives sooty flame on combustion ?

కింది వాటిలో ఏది దహన చర్యలో మసితో కూడిన జ్వాలను ఇస్తుంది? (1) C₂H₄ (2) CH₄ (3) C₂H₆ (4) C₆H₆

155. Which one of the following elements on doping with germanium, make it a p-type semiconductor ?

ု၆၀၀ ဉ	మూలకంతో	డో పింగ్	చేస్తే,	జర్మేనియం	p-రకం	ఆర్థ వాహ కమవుతుంది ?
(1) Bi				(2)	Sb	
(3) As				(4)	Ga	

156. The molar mass of a solute X in g mol⁻¹, if its 1% solution is isotonic with a 5% solution of cane sugar (molar mass = 342 g mol⁻¹), is
5% చెక్కెర (మోలార్ ద్రవ్యరాశి = 342 g mol⁻¹) దావణముతో ఐసోటోనిక్ అయిన 1% దావణములోని దావితము X యొక్క మోలార్ ద్రవ్యరాశి g mol⁻¹లలో
(1) 68.4
(2) 34.2
(3) 136.2
(4) 171.2

157. Vapour pressure in mm Hg of 0.1 mole of urea in 180 g of water at 25°C is

(The vapour pressure of water at 25°C is 24 mm Hg)
0.1 మోల్ యూరియాను 180 g నీటిలో 25°C వద్ద కరిగించగా ఏర్పడిన దానణ బాష్ప్రీడనం మీమి Hgలో
(25°C వద్ద నీటి బాష్ప్ర పీడనం 24 mm Hg)
(1) 2.376
(2) 20.76
(3) 23.76
(4) 24.76

158. At 298 K the molar conductivities at infinite dilution (Λ_m^o) of NH₄Cl, KOH and KCl are 152.8, 272.6 and 149.8 S cm² mol⁻¹ respectively. The Λ_m^o of NH₄OH in S cm² mol⁻¹ and % dissociation of 0.01 M NH₄OH with $\Lambda_m = 25.1$ S cm² mol⁻¹ at the same temperature are

298 K వద్ద NH₄Cl, KOH మరియు KClల అనంత విలీన మోలార్ వాహకత (Λ_m^0)లు వరుసగా 152.8, 272.6 మరియు 149.8 S cm² mol⁻¹. NH₄OH యొక్క Λ_m^0 S cm² mol⁻¹లలో మరియు $\Lambda_m^- = 25.1 \text{ S cm}^2 \text{ mol}^{-1}$ గల 0.01 M NH₄OH యొక్క % వియోగము అదే ఉష్ణోగత వద్ద

(4) 30, 84

(1) 275.6, 0.91 (2) 275.6, 9.1

(3) 269.6, 9.6

159. In a first order reaction the concentration of the reactant decreases from 0.6 M to 0.3 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M in minutes is

ఒక ప్రథమ క్రమాంక చర్యలో క్రియా జనకగాఢత 0.6 M నుండి 0.3 M కు 15 నిముషములలో తగ్గును. దాని గాఢత 0.1 M నుండి 0.025 M తగ్గడానికి పట్టు కాలం నిముషములలో (1) 1.2 (2) 12 (3) 30 (4) 3

160. Assertion (A) : van der Waals' forces are responsible for chemisorption.

Reason (R) : High temperature is favourable for chemisorption.

The correct answer is

(1) (A) is not correct but (R) is correct

(2) (A) and (R) are correct and (R) is the correct explanation of (A)

(3) (A) and (R) are correct but (R) is not the correct explanation of (A)

(4) (A) is correct but (R) is not correct

నిశ్చితము (A) : రసాయన అథిశోషణానికి వాండర్వాల్ బలాలు కారణం.

కారణం (R) : రసాయన అథిశోషణానికి అధిక ఉష్ణోగత అనుకూలము.

ఇది సరియైన సమాధానం :

(A) సరియొనది కాదు కాని (R) సరియొనది

(2) (A) మరియు (R) లు సరియొనవి, (A)కు (R) సరియొన వివరణ

(3) (A) మరియు (R) లు సరియొనవి, కాని (A)కు (R) సరియొన వివరణ కాదు

(4) (A) సరియొనది కాని (R) సరియొనది కాదు