ວາຊີ ລີດ໌

NEE	T(UG	b) GRA	AND 7	EST
No. of Questions: 180	Max. Marks: 720	Time: 3 Hours	3) Ce^{2+} 4) Sm^{+2}	1) $1 - \frac{a}{RTV}$ 2) $1 - \frac{RTV}{2}$
[Each Question carries 4 నిన్నటి 'విద్య' తరువాయి	resistance R_2 in series with the	maximum height reached by the	144. Paramagnetic and inner orbital complex is 1) $[Ni(CN)_5]^{3-}$ 2) $[Fe(CN)_6]^{4-}$	$\frac{\text{RTV}}{3} \frac{1+\frac{a}{\text{RTV}}}{4} \frac{4}{1+\frac{\text{RTV}}{4}}$
121. One mole of an ideal gas at an initial temperature of TK does	same coil. The resistance R required to obtain a voltmeter	ball is? (g=10m/s) 1) 7.2m 2) 5m	3) $[Fe(H_2O)_5NO]^{27} 4$) $[Fe(CN)_6]^{3-7}$ 145. In the iso electronic metal	152. If the temperature of 1 mole of
6R joules of work adiabatically. If $\gamma = \frac{5}{3}$, the final temperature	that can be read upto 2V volts is 1) $R_1 - 2R_2$ 2) $3R_1 - R_2$ 3) $R_1 - R_2$ 4) $3R_1 - 2R_2$	3) 6.1m 4) 12.2m 135. The equation of a stationary $y = 4 \sin\left(\frac{\pi x}{2}\right) \cos(100\pi t)$	carbonyls , the CO bond strength is expected to increase in the following order	an ideal gas is increased by 1°C at constant pressure, the work done by the gas is equal to:
of gas will be 1) $(T + 2.4)K$ 2) $(T - 4)K$ 3) $(T + 4)K$ 4) $(T - 2.4)K$	128. A man is watching two trains one leaving and the other coming in with equal speed of $3ms^-$	where x is in cm and t is in seconds. Phase difference bet	1) $[Mn(CO)_6]^+ < (Cr(CO)_6) < [V(CO)_6]^-$ 2) $[V(CO)_6]^- < [Mn(CO)_6] < [Cr(CO)_6]^+$ 2) $[V(CO)_6]^- < [Mr(CO)_6]^+ < [Cr(CO)_6]^+$	1) R 2) 2R 3) $\frac{R}{2}$ 4) $\frac{R}{4}$
 122. A carnot engine whose sink is at 300k has an efficiency of 40%. 	¹ . If they sound their whistles with equal frequency of 220	ween two points lying at $x = 8$ cm and $x = 12$ cm is	$3) [V(CO)_{6}] < [Mn(CO)_{6}]^{+} < [Cr(CO)_{6}]^{-}$ $4) [Cr(CO)_{6}] < [Mn(CO)_{6}]^{+} < [V(CO)_{6}]^{-}$ 146. True statements among the	153. A System contained 10 kg of water at 77°C. It looses 500J of
By how much should the tempe- rature of source be increased so	Hz, the number of beats heard by the man will be $(V_{sound} =$	1) π rad 2) $\frac{2\pi}{5}$ rad	following is a) PH_5 , NCl_5 , $BiCl_5$ does not exist	heat to the surrounding at 27° C. Then Δ S total for the process is:
50% of original efficiency?	1) 6 2) 3 3) 4 4) 1 129. The blocks P O and R have	3) Zero 4) 2πr CHEMISTRY	c) I_3^+ has bent shape d) CO and C_2^{2-} has the same	$\begin{array}{c} 1) -2.83 \text{ J/K} 2) -2.38 \text{ J/K} \\ 3) 2.38 \text{ J/K} 4) \text{ Zero} \end{array}$
3) 100K 4) 250K 123. In case of a soap bubble, the	masses 2Kg, 4Kg, and 4Kg respectively. They are connected	136. Select the correct statement regarding alkali metals	bond order 1) a, b,c and d 2) a b and d an lar	154. ΔH_{f}^{\ominus} of Graphite is taken as zero. Then ΔH_{f}^{0} of fullerenes
radius, double the surface area and double the volume is	The surface is smooth. The area of cross-section of the string is	 1) Li₂CO₃ is water soluble and cannot decompose on heating 2) LiHCO₃ is a crystalline 	2) a b and d only3) b,c and d only4) a, d only	1) Positive 2) Negative 3) Zero 4) Can not say
1) 1 : 2 : 3 3) 3 : 1 : $(2^{1/3}-1)$ 4) 3: 4 : 5	0.004 cm^2 and youngs modulus is $4 \times 10^5 \text{ Nm}^{-2}$ then the longitudinal strain in string B is	water insoluble solid 3) Na_2CO_3 is water soluble where as K_2CO_3 is water in	147. Select the incorrect match 1) $SO_4^{2-}, ClO_4^-, PO_4^{3-} = Same$ bond angle	155. For the reactions $2CO_{(g)} + 2H_2O_{(g)} \Longrightarrow 2CO_{2_{(g)}}$
124. There is a opening of area 'a' near the bottom of a vessel	2 Kg 4 Kg	soluble 4) An aqueous solutions of	2) $Cl_2O < ClO_2 = Bond angle$ 3) $NO_2^+ > NO_2^- = Bond angle$ 4) $CO_2 > NO_2^+ = Bond angle$	$+2H_{2_{(g)}}, K_{C} = K_{1}$ $CH_{4(g)} + H_{2}O_{(g)} \Longrightarrow CO_{(g)}$
The density of the liquid is ρ . A disc is held against the opening	B R 4 Kg	137. Radius difference between the following atoms is least	 4) CO₂ > IO₂ = Bond angle 148. de Broglie wavelength of an electron accelerated by an electric 	$+3H_{2(g)}, K_{C} = K_{2}$ $CH_{4(x)} + 2H_{2}O_{1(x)} CO_{2(x)}$
to keep the liquid from running out. The liquid exerts a force F_1 on the disc. Now the disc is	1) 2×10^{-2} 2) 3×10^{-2} 3) 1.5×10^{2} 4) 2.5×10^{2} 130 A Homogeneous solid sphere of	1) B & A <i>l</i> 2) A <i>l</i> & Ga 3) Ga & In 4) B and Ga 138 Hydrolysis followed by	field of 'v' volts is given by 1) $\lambda = \frac{1.23}{\sqrt{m} v} \text{pm}$ 2) $\lambda = \frac{1.23.m}{\sqrt{h} v}$	$+4H_{2(g)}, K_{C} = K_{3}$ Then K K and K are related as
moved from the opening a short distance. The emerging liquid	radius 0.2m and mass 5k rotates about its diameter. Angular	polymerisation of the following gives a linear silicon polymer	3) $\lambda = \frac{1.23}{\sqrt{v}}$ nm 4) $\lambda = \frac{1.23}{v}$	1) $K_1 = \frac{K_3}{K_2}$ 2) $K_3 = \sqrt{K_1, K_2}$
strikes the disc with a force F_2 . Then $\frac{F_1}{F_2}$ is	velocity of the sphere as a function of time 't' is given by the formula $\omega = (3 + 5t)rads^{-1}$.	1) $R_3 SiCl$ 2) $R_2 SiCl_2$ 3) $RSiCl_3$ 4) $R_4 Si$	an element is 2, 8, 18, 1 the most stable oxidation state	3) $K_3 = K_1 K_2 4$ $K_1 = K_2 K_3$ 156. Solubility of AgC <i>l</i> is maximum in:
h	The tangential force applied to the sphere is 1) 1N 2) 3N 3) 2N 4) 4N	139. Ammonium salt with Nessler's reagent in alkaline media gives brown coloured chemical, the	exhibited by the element in aqueous solution is: 1) M^+ 2) M^{2+}	$\left[K_{sp} \text{ of } AgClin \text{ water } = 10^{-10} M^2 \right]$ 1) Water
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	131. Two resistors of resistances R_1 = (100 ± 3) Ω and R_2 = (200 ±	composition of the chemical is 1) $HgO.Hg(NH_3)I$	3) M^{3+} 4) M^{7+} 150. Three samples of water A, B	2) 0.1M NaCl 3) Liq.NH ₃
125. Two charges each of charge +10 c are kept on y-axis at $y =$ -a and $y =$ +a respectively.	4) Ω are connected in parallel. The equivalent resistance of the parallel combination is	3) $HgO_2.Hg(NH_3)_2I$ 4) $HgO.HgI_2$	and C are labelled as $A = 10^{-3} \text{ molal MgSO}_4$; $B = 10^{-3}$ molal CaSO ₄ ; $C = 10^{-3}$ molal	4) 0.01M AgNO ₃ KEY
Another point charge -20 c is place at the origin and given a small displacement $r(r < z)$	1) $(66.7 \pm 1.8)\Omega$ 2) $(66.7 \pm 4)\Omega$ 3) $(66.7 \pm 3)\Omega$ 4) $(66.7 \pm 7)\Omega$	140. Conc. H_2SO_4 when treated with a Iodised salt violet fumes comes out. This is due to	CaC l_2 . The correct order of degree of hardness of these samples is:	121) 2 122) 4 123) 3 124) 3 125) 3 126) 3 127) 4 128) 3
along x - axis. The force acting on the point charge is (x and a	132. A Microscope consists of two convex lenses of focal lengths	1) H_2SO_4 reduces HI to I_2 2) H_2SO_4 oxidises HI to I_2	1) $A > B > C$ 2) $A > C > B$	129) 3 130) 3 131) 1 132) 3 133) 4 134) 3 135) 1 136) 4
are in meters) $\frac{3.6x}{a^2}N = \frac{2.4x^2}{a}N$	25cm and 6.25cm placed 15 cm apart. The distance of object from the objective so that the	3) H_2SO_4 reduces HI to HIO_3 4) H_2SO_4 oxidises HI to HIO_4 141. Select the correct match	3) $B > C > A$ 4) $A = B = C$ 151. At low pressure Van der waal's	137) 2 138) 2 139) 2 140) 2 141) 4 142) 1 143) 2 144) 4 145) 2 146) 1 147) 4 148) 3
3) $\frac{3.6x}{a^3}$ N 4) $\frac{4.8x}{a^2}$ N	final virtual image is at a distance of 2cm from the eye is 1) 1.5cm 2) 2cm	1) SO_3 – turns acidified $K_2Cr_2O_7$ to green	equation is reduced to $\left(P + \frac{a}{V^2}\right)V = RT$ under these	149) 2 150) 4 151) 1 152) 1 153) 3 154) 1 155) 2 156) 3
126. A region contains a uniform electric field $\vec{E} = (10\hat{i} + 30\hat{j})Vm^{-1}$	3) 2.5cm 4) 3cm 133. If C, R, L and I denote Capacity, Presistence Inductors and	2) H_2S – formed during roasting of sulphide mineral	conditions, the compressability factor 'Z' is given by:	మిగతా రేపటి 'విద్య 'లో
field at $(1, 2, 0)$ m and $(2, 1, 3)$ m are respectively. The work done	electric current respectively, the quantities having the same	called king of chemicals 4) Cl_2 – disproportionates in	NFFT _2010	సాక్షి
when a charge of 0.8c moves from A to B in a parabolic path is	dimensions of time are a) CR b) $\frac{L}{R}$	alkaline media142. Water transported through leadpipes becomes poisonous due	Online Grand T	SAKSHI EDUCATION
1) 4J 2) 40J 3) 16J 4) 80J 127. A galvanometer can be conver-	c) \sqrt{LL} d) LI^2 1) a,b only 2) a,c only	to the formation of 1) $Pb(OH)_2$ 2) PbO 2) PbO (2) PbO	 Prepared by Sakshi Experts 	
ted into a voltmeter to measure upto V volts connecting by a resistance R ₁ in series with coil.	3) a,d only 4) a,b,c only134. In the presence of air resistance, a ball thrown vertically upwards with	143. Which of the following lanthanoid is diamagnetic [z of Ce = $\frac{3}{2}$	 Students can practice test at any time& at any place. 	
$\frac{V}{2}$ volts by connecting a	velocity of 12ms^{-1} returns ground with velocity of 10ms^{-1} . The	58, Sm = 62, Eu = 63 Yb = 70] 1) Eu ²⁺ 2) Yb ²⁺	Visit www.sakshieducation.com	

