Send your Feedback to vidya@sakshi.com

సాక్షి విద్య

What is the ratio of their speeds?

N. Vinaykumar Reddy	BC AC AB			3+1 4 1 15 1
Director, IACE,	$\frac{BC}{PQ} = \frac{AC}{AP} = \frac{AB}{AQ}$		$A = P \left(1 + \frac{R}{100} \right)^{T}$	$\Rightarrow \frac{3+1}{60} \Rightarrow \frac{4}{60} \Rightarrow \frac{1}{15} = 15 \text{ days}$
Hyderabad.	$\Rightarrow \frac{8}{4} = \frac{AC}{2.8} \Rightarrow AC = 5.6 \text{ cm}$			Ans: a 16. A pump can fill a cistern in 40
Ultra Million	Ans:c	SSC CHSL	$\Rightarrow 2 = 1 \left(1 + \frac{R}{100} \right)^4$	minutes and another pump can
Madel Oraștiana	5. When we draw the graphs of the	Quantitative Aptitude	\therefore both side square	empty the filled up cistern in 1
Model Questions	equations $x + y = 6$ and $2x + 3y$ = 16 on the same graph paper, the	Special	$\Rightarrow 2^2 = \left(1 + \frac{R}{100}\right)^8$	hour. By mistake, with out closing the second pump, the
1. The value of	coordinates of the point where	Also useful for	After 8 years the principle will	first pump is opened. The time in
$\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$ is	the two lines intersect are a) $(-3, 6)$ b) $(-2,0)$	Other Competitive Exams	be 4 times itself. Ans: c 12. Ravi purchased an article marked	which the empty cistern will be filled up is
	c) $(2, 4)$ d) $(1, 3)$		at Rs. 21000 at 5% discount. The	a) 4 hours b) 1 hour
a) 4 b) 0 c) $\sqrt{2}$ d) $3\sqrt{6}$ Sol:	Sol: If $x + y = 6m$, then $y = 6-x$		rate of sales tax on the article is 10% Money paid by Pavi to	c) 2 hours d) 3 hours Sol: Part of the cistern filled in 1
Expression =	For $x = 0$, $y = 6$ x = 2, $y = 4$	$\Rightarrow \sqrt{(0+4)^2 + (y-3)^2}$	10%. Money paid by Ravi to purchase the article is	hour when both pumps are
3.2 4.3 .6	V St	$\Rightarrow 36 + (y - 5)^2 = 16 + (y - 3)^2$	a) Rs. 19,845 b) Rs. 19,950	opened together
$=\frac{3\sqrt{2}}{\sqrt{3}+\sqrt{6}}-\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}+\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$	$^{6}_{5}$ P (2, 4) $^{4}_{3}$ C (7 2)	$\Rightarrow 36 + y^2 - 10y + 25 = 16 + y^2 - 6y + 9$	c) Rs. 23,100 d) Rs. 21,945 <i>Sol:</i> Price of article after discount	$=\frac{1}{40} - 1 = \frac{60}{40} - 1 = \frac{3}{2} - 1 = \frac{1}{2}$
$=\frac{3\sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}-\sqrt{3})(\sqrt{6}-\sqrt{3})}$	$2 \\ 1 \qquad (\overline{2}, 3)$	$\Rightarrow 4y = 36 \Rightarrow y = 9$	$= \text{Rs.}\left(\frac{21000 \ 95}{100}\right) = \text{Rs.}19950$	60
$=\frac{1}{(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})}-$	x ⁻ O 12 34 5 6 X	∴ Required point is (0, 9). <i>Ans:</i> a	Price of article after sales tax	$\therefore \text{Required time} = 2 \text{ hours}$ Ans: c
1.2(6 2) 6		9. If 90% of $A = 30\%$ of B and $B =$	$= \text{Rs.}\left(\frac{19950 \ 110}{100}\right) = \text{Rs.} 21945$	17. The diameter of a roller is 84 cm
$-\frac{4\sqrt{3}(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}+\frac{\sqrt{6}}{(\sqrt{3}+\sqrt{2})}$	y^{y} If $2x + 3y = 16$ then	2x% of A, then the value of x is a) 450 b) 400	(100) Ans: d	and its length is 120 cm. It makes 500 complete revolutions to
	$y = \frac{16 - 2x}{3}$	c) 300 d) 150	13. A kinetic Honda covers a	move once over to level a
$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}$		Sol: $\frac{A \ 90}{100} = \frac{B \ 30}{100}$	distance of 140 km in 2 hours	playground. Find the area of the $\begin{pmatrix} 22 \end{pmatrix}$
	For, $x = 2$, $y = 4$ x = 7/2 $y = 3$	$\Rightarrow 3A = B$	and 20 minutes while a car covers the same distance in 1	playground in sq. cm. $\left(\pi = \frac{22}{7}\right)$
$=\frac{3\sqrt{2}(\sqrt{6}-\sqrt{3})}{6-3}-\frac{4\sqrt{3}(\sqrt{6}-\sqrt{2})}{(6-2)}+$	Ans: c	$\Rightarrow 3A = A \times 2x/100$	hour and 40 minutes. What is the	a) 1594 sq. m b) 1580 sq. m
$\sqrt{6}(\sqrt{3}-\sqrt{2})$	6. The mean of 50 numbers is 30. Later it was discovered that two	$\Rightarrow 300 = 2x \Rightarrow x = 150$ <i>Ans:</i> d	ratio of their speeds? a) 6 : 7 b) 3 : 7	c) 1584 sq. m. d) 1590 sq. m. Sol:Area of the playground leveled
3-2	entries were wrongly entered as	10. A man stands at a point A on the	c) 4 : 7 d) 5 : 7	in one revolution
$= \sqrt{2} (\sqrt{6} - \sqrt{3}) - \sqrt{3}(\sqrt{6} - \sqrt{2}) + \sqrt{6}(\sqrt{3} - \sqrt{2})$	82 and 13 instead of 28 and 31. Find the correct mean	bank of a river and looks at the top of a tree which is exactly	Sol: Speed = $\frac{\text{Distance}}{\text{Time}}$	$=2\pi r \times \text{length}$
$= \sqrt{12} - \sqrt{6} - \sqrt{18} + \sqrt{6} + \sqrt{18} - \sqrt{12}$	a) 36.12 b) 30.66	opposite to him on the other	Required ratio	$=2 \times \frac{22}{7} \times 42 \times 120 = 31680$ sq. m.
= 0 Ans: b 2. If $\cos 2x = \cos 60^{\circ} \cos 30^{\circ} + \sin 20^{\circ}$	c) 29.28 d) 38.21 Sol:	bank. The angle of elevation is 45°. He then walks 200 m at right	$=\frac{140 \text{km}}{140 \text{ min utes}}:\frac{140 \text{km}}{100 \text{ min utes}}$	$\therefore \text{ Area of the playground} = (500 \times 31680) \text{ sq.cm}$
2. If $\cos 2x = \cos 30^\circ$ cos 30° + sin $60^\circ \sin 30^\circ$, then the value of x is		angles to the bank and away from	= 100 : 140 = 5 : 7 Ans: d	$= (500 \times 51000)$ sq.cm = 15840000 sq.cm
a) 15° b) 40° a) 20° d) None of these	$= 30 + \frac{(28 + 31 - 82 - 13)}{50}$	it to the point B. From B he looks		= 1584 sq. metre Ans: c 18 The surror surface area of a right
c) 30° d) None of these Sol: $\cos 2x = \cos 60^{\circ} \cos 30^{\circ} + \sin$		at the top of the tree and the angle of elevation as 30°. The	of milk and water is 4 : 1. How many liters of water must be	18. The curved surface area of a right circular cylinder of radius 2 cm is
$60^{\circ} \sin 30^{\circ}$		height of the tree is:	added to make the ratio $2:3?$	264cm^2 . The height of the
$\Rightarrow \cos 2x = \frac{1}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \frac{1}{2}$	Ans: c 7. Krishna purchased a number of	a) $10(\sqrt{3} + 1)m$ b) $100(\sqrt{3} - 1)m$	a) 70 b) 28 c) 40 d) 35	cylinder, in cm, is a) 14 b) 10.5
$\Rightarrow \cos 2x = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$	articles at Rs. 10 for each and the	c) 88 $(\sqrt{3} + 1)$ m	Sol: In 35 liters of mixture,	c) 21 d) 42
$\Rightarrow \cos 2x = \cos 30^{\circ}$	same number for Rs. 14 each. He mixed them together and sold	d) $100(\sqrt{3}+1)m$ Sol: $\angle ATE = 90^{\circ}$	$Milk = \frac{4}{5} \times 35 = 28 liters$	Sol:Curved surface area of cylinder = 2π rh
$\Rightarrow 2x = 30^{\circ} \Rightarrow x = 15^{\circ} Ans: a$		$\therefore \angle AET = 45^{\circ}$	Water $=$ 7 liters	$\Rightarrow 2\pi rh = 264$
3. A shopkeeper allows a discount of 10% to his customers and still	gain or loss percent is	Hence $AT = TE$, where TE	It x liters of water be added, then $28 2$	$\Rightarrow 2 \frac{22}{7} 2 h = 264$
grains, 20%. Find the marked	a) LOSS $\delta = \%$ b) Gain $\delta = \%$	represents the tree	$\frac{28}{x+7} = \frac{2}{3}$	$\Rightarrow h = \frac{264}{2} \cdot \frac{7}{22} = 21 \text{ cm}$
price of the article which costs	c) Loss $8\frac{2}{3}\%$ d) Gain $8\frac{1}{3}\%$		$\Rightarrow 2x + 14 = 28 \times 3 = 84$	
Rs. 450? a) Rs. 600 b) Rs. 540	Sol:Let 10 articles of each kind be	Hm	$\Rightarrow 2x = 84 - 14 = 70$	Ans: c 19. A rides from his house at 12 noon
c) Rs. 660 d) Rs. 580	bought	30° (45°	$\Rightarrow x = \frac{70}{2} = 35 \text{ liters} \qquad Ans: d$	towards B's house at a speed of 8
<i>Sol:</i> Let the marked price of the article be Rs. <i>x</i>	Total cost = Rs. $(10 \times 10 + 14 \times 10) = \text{Rs.} 240$	B $\overline{200 \text{ A}}$ x T Let AT = TE = x m	15. A and B together can complete a work in 12 days. A alone can	km/hour. After 1 hour, B rides from his house towards A's at a
$\therefore x \times \frac{90}{100} = \frac{450 \ 120}{100}$	Total selling price	From Δ BTE, $\frac{\text{ET}}{\text{BT}}$ = tan 30°	complete it in 20 days. If B now	speed of 7 km/hour. If the
	$= 13 \times 20 = \text{Rs. } 260$	1	does the work only for half a day	distance between the two houses
$\Rightarrow \frac{9x}{10} = 540$	$\therefore \text{ Gain percent} = \frac{260 - 240}{100} 100$	$\Rightarrow \frac{x}{x+200} = \frac{1}{\sqrt{3}}$	daily, then the number of days required to complete the work,	is 68 km, the time when they meet is
$\Rightarrow x = \frac{540 10}{2} = Rs.600$	240	$\Rightarrow x = \frac{200}{\sqrt{3} - 1} = \frac{200}{(\sqrt{3} + 1)(\sqrt{3} - 1)}$	by A and B together, is	a) 6 PM b) 3 PM
9 Ans: a	$=\frac{20\ 100}{240}=8\frac{1}{3}\%$ Ans: d	$= 100 (\sqrt{3} + 1) $ Ans: d	a) 15 b) 14 c) 16 d) 18	c) 4 PM d) 5 PM <i>Sol:</i> Let both meet after t hours.
4. In the figure $\triangle ACB - \triangle APQ$. If	8. Find a point on the $y-ax$ is which	11. A sum of money placed at	Sol:B's 1 day's work	Distance covered by A in t
BC = 8 cm, PQ = 4 cm, AP = 2.8 cm, Find CA:	is equidistant from the points A $(6, 5)$ and B $(-4, 3)$	compound interest doubles itself in 4 years. In how many years	$=\frac{1}{12} - \frac{1}{20} = \frac{5-3}{60} = \frac{2}{60} = \frac{1}{30}$	hours + distance covered by B in (t-1) hours = 68 km
a) 8 cm b) 6.5 cm	(0, 5) and $B(-4, 5)$ a) (0, 9) b) (9, 0)	will it amount to four times	Hence, B alone will complete the	$\Rightarrow 8t + 7(t-1) = 68$
c) 5.6 cm d) None of these	c) $(3, 0)$ d) $(4, 0)$ Sol: L at the required point by $P(a, y)$	itself?	work in 30 days	$\Rightarrow 8t + 7t - 7 = 68$ $\Rightarrow 15t - 68 + 7 - 75$
Sol: B	Sol: Let the required point be $P(o, y)$ $\therefore PA = PB$	a) 12 years b) 13 years c) 8 years d) 16 years	On working for half a day, daily, time taken by $B = 60$ days	$\Rightarrow 15t = 68 + 7 = 75$ $\Rightarrow t = \frac{75}{2}$
	$\Rightarrow \sqrt{(0-6)^2 + (y-5)^2}$	Sol:	$\Rightarrow \frac{1}{20} + \frac{1}{60}$	15
Cr VQ			20 60	= 5 hours i.e. at 5 p.m. Ans: d

