Send your Feedback to vidya@sakshi.com

How much volume of wood is required.

MODEL QUESTIONS

Director, IACE,

Hyderabad.

Ans: c

సాక్రి విద్య

1. In the base and height of a triangle are doubled, then find the ratio of initial area and new area of the triangle. a) 4 : 1 b) 2 : 5

c) 1 : 4 d) 2 : 1
Sol:
$$\Delta_1 = \frac{1}{2}$$
 b h
 $\Delta_2 = \frac{1}{2}$ 2b 2h
 $\frac{\Delta_1}{\Delta_1} = \frac{\frac{1}{2}bh}{1} = 1:4$

$$\frac{1}{\Delta_2} = \frac{1}{\frac{1}{2}} 4bh$$
$$\Delta_1 : \Delta_2 = 1:4$$

2. C and D are point on the semicircle subscribed on BA as diameter. If $BAD = 40^{\circ}$ and $DBC = 20^\circ$, ABD = ?b) 40° a) 50° c) 60° d) 70° Sol:

 $\frac{22}{7} \times 3x \times 7x = 1056$ $\frac{22}{7} \times 21x^2 = 1056$

 $21x^2 = \frac{1056}{22}$ $x^2 = \frac{1056}{22} \frac{7}{21}$

x = 4

 $r = 3 \times 4 = 12 \text{ cm}$ Ans: b 5. The area of an equilateral triangle, inscribed in a circle is $16\sqrt{3}$ cm². The area of the circle in terms of π will bea) $3\frac{1}{21}\pi \text{cm}^2$ b) $13\pi \text{cm}^2$ c) $18\frac{1}{3}\pi \text{cm}^2$ d) $21\frac{1}{3}\pi \text{cm}^2$ Sol: D

> The area of the equilateral triangle $=\frac{\sqrt{3}}{4}$ side²

$$16\sqrt{3} = \frac{\sqrt{3}}{4}$$
 side²
∴ side = 8 cm

RRB **Mathematics** Special Also useful for Other Competitive Exams $\angle \text{OCD} = 180^{\circ} - 75^{\circ}$ (linear pair) $= 105^{\circ}$ IN $\triangle OCD$ $\angle \text{COD} = 180^{\circ} - (105^{\circ} + 45^{\circ})$ $= 30^{\circ}$ Now, \angle COD = CAO (Alternate angle) $\angle CAO = 30^{\circ}$ $\angle CAB = 180^{\circ} - \angle CAO^{\circ}$ (linear pair) $\angle CAB = 150^{\circ}$ Ans: b **8.** ABCD is a rhombus whose three vertices A, D and C lie on a circle while the 4th vertex B lies on its centre. If the area of rhombus is $8\sqrt{3}$ cm². Find the radius of the circle? a) 6 cm b) 8 cm c) 2 cm d) 4 cm Sol:

Sol: coº (2 60° 120 m $\tan 60^\circ = \frac{BO}{OA}$ $OA = \frac{OB}{\sqrt{3}}$ $OA = \frac{120\sqrt{3}}{3}$ $OA = 40\sqrt{3} m$ Ans: b **11.** The ice compartment in a refrigerator is 18 cm deep, 6 cm high and 3 cm wide, then how many ice cubes will it hold, if Sol: each cube is 3 cm as its edge. a) 10 b) 8 c) 12 d) 9 Sol: The volume of ice compartment $= 18 \times 6 \times 3 = 324 \text{ cm}^3$ The volume of one ice cube $=(3)^3 = 27 \text{ cm}^3$ So, Required number of cubes $=\frac{324}{27}=12$ Ans: c **12.** The sides of a triangle are 5, 13

against the current. The speed of the current (in km/hr) is – a) 2 km/hr b) 4 km/hr c) 3 km/hr d) 5 km/hr *Sol:* Let the speed of the current be *x* km/h $\frac{8}{8-x} = 2$ 8 = 16 - 2x2x = 8x = 4 km/hr Ans: b **14.** If $a^2 + b^2 = 121$ and ab = 52, then value of $\frac{a+b}{a-b}$ is – a) 0 b) 13 d) $\frac{13}{\sqrt{17}}$ c) $\frac{15}{\sqrt{17}}$ $\frac{a+b}{a-b} = \sqrt{\frac{a^2 + b^2 + 2ab}{a^2 + b^2 - 2ab}}$ $\frac{a+b}{a-b} = \sqrt{\frac{121+2(52)}{121-2(52)}} = \sqrt{\frac{225}{17}} = \frac{15}{\sqrt{17}}$ Ans: c 15. A wooden box measures $18 \text{ cm} \times$ $16 \text{ cm} \times 12 \text{ cm}$. Thickness of wood is 1 cm. How much volume of wood is required to

make the box (in cubic cm)?

b) 1388 cm³

d) 1186 cm³

= 18 cm, Breadth

Ans: c

Tests

40° triangle In ∆ABD $\angle BDA = 90^{\circ}$ $\angle ABD = 180^{\circ} - (40^{\circ} + 90^{\circ})$ $\angle ABD = 50^{\circ}$ Ans: a 3. What will be the area of the right angle isosceles triangle whose hypotenuse is 18 cm? a) 158 cm² b) 162 cm^2 c) 164 cm² d) 324 cm^2 Sol: Sol: Distance AB = BC = x $AC = 18\sqrt{2}$ $x^2 + x^2 = (18 \sqrt{2})^2$ $\Rightarrow 2x^2 = 18 \times 18 \times 2$ Distance x = 18The area of triangle $= \frac{1}{2} \times \text{base} \times \text{height}$ $= \frac{1}{2} \times 18 \times 18 = 162 \text{ cm}^2$ Ans: b 4. The radius of base and slant height of a cone are in the ratio 3 : 7. If its curved surface area is 1056cm^2 , then the radius (in cm) of its base is $\left(\pi = \frac{22}{7}\right)$ a) 16 b) 12 c) 18 d) 24 Sol: a) 120° 28 c) 45° Sol: $\pi r l = 1056 \text{ cm}^2$

: The height of the equilateral $=\frac{\sqrt{3}}{2}$ 8 = 4 $\sqrt{3}$ cm The radius of the circum circle $=\frac{2}{3}$ $4\sqrt{3}=\frac{8}{\sqrt{3}}$ cm ... The area of the circle $=\pi \frac{8}{\sqrt{3}} \frac{8}{\sqrt{3}} = \frac{64}{3}\pi$ Now, Thus, $=21\frac{1}{3}\pi \text{cm}^2$ Ans: d **6.** The distance of the point (12, -9)triangles from the origin is -ABCD a) 13 units b) 15 units c) 12 units d) 17 units $8\sqrt{3} = 2 \quad \frac{\sqrt{3}}{4}r^2$ $16 = r^2$ $=\pi \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ r = 4 cmOrigin = (0, 0) $\sin^2 90^\circ$ is – $\sqrt{(12-0)^2+(-9-0)^2}$ a) $\frac{3}{2}$ $\sqrt{144+81} = \sqrt{225} = 15$ units c) $\frac{1}{2}$ Ans: b 7. In the given figure ABIDE, AC || BD, DE ⊥ BE, ∠FDC = 45° and $\angle C = 75^{\circ}$. 90° $= 1 + 1 + \frac{1}{2} + 1$ $=\frac{7}{2}$ What is the measure of $\angle CAB$? b) 150° d) 135° point on the shore directly below the observer. a) 40 √2 m c) $33 \sqrt{3}$ m d) $50 \sqrt{3}$ m

b) 40 √3 m

and 10 cm. the radius of its
incircle is –
a)
$$4\sqrt{2}$$
 cm b) $3\sqrt{2}$ cm
c) $\frac{3\sqrt{2}}{7}$ cm d) $\frac{3\sqrt{14}}{7}$ cm
c) $\frac{3\sqrt{2}}{7}$ cm d) $\frac{3\sqrt{14}}{7}$ cm
c) $\frac{3\sqrt{2}}{7}$ cm d) $\frac{3\sqrt{14}}{7}$ cm
c) $\frac{3\sqrt{2}}{2}$ cm d) $\frac{3\sqrt{14}}{7}$ cm
c) $\frac{3\sqrt{14}}{7}$ cm
c) \frac{3\sqrt{14}}{7} cm
c) $\frac{3\sqrt{14}}{7}$ cm
c) \frac{3\sqrt{14}}{7} cm
c) $\frac{3\sqrt{14}}{7}$ cm
c) \frac{3\sqrt{14}}{7} c

RRB GROUP-D & NTPC

10+10 Tests With Explanations

- Subscribe one time & Practice any number of times
- Graphical Performance Reports

www.sakshieducation.com

