## How much volume of wood is required..


N. Vinaykumar Reddy

Director, IACE,
Hyderabad.

## MODEL QUESTIONS

1. In the base and height of a triangle are doubled, then find the ratio of initial area and new area of the triangle.
a) $4: 1$
b) $2: 5$
c) $1: 4$
d) $2: 1$

Sol: $\quad \Delta_{1}=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$
$\Delta_{2}=\frac{1}{2} \times 2 \mathrm{~b} \times 2 \mathrm{~h}$
$\frac{\Delta_{1}}{\Delta_{2}}=\frac{\frac{1}{2} \mathrm{bh}}{\frac{1}{2} \times 4 \mathrm{bh}}=1: 4$
$\Delta_{1}: \Delta_{2}=1: 4$
Ans: $c$
2. $C$ and $D$ are point on the semicircle subscribed on BA as diameter. If $\mathrm{BAD}=40^{\circ}$ and $\mathrm{DBC}=20^{\circ}, \mathrm{ABD}=$ ?
$\begin{array}{ll}\text { a) } 50^{\circ} & \text { b) } 40^{\circ}\end{array}$
c) $60^{\circ}$
d) $70^{\circ}$

Sol:


In $\triangle \mathrm{ABD}$
$\angle \mathrm{BDA}=90^{\circ}$
$\angle \mathrm{ABD}=180^{\circ}-\left(40^{\circ}+90^{\circ}\right)$
$\angle \mathrm{ABD}=50^{\circ}$
Ans: a
3. What will be the area of the right angle isosceles triangle whose hypotenuse is 18 cm ?
a) $158 \mathrm{~cm}^{2}$
b) $162 \mathrm{~cm}^{2}$
c) $164 \mathrm{~cm}^{2}$
d) $324 \mathrm{~cm}^{2}$

Sol:

$\mathrm{AB}=\mathrm{BC}=x$
$\mathrm{AC}=18 \sqrt{ } 2$
$x^{2}+x^{2}=(18 \sqrt{ } 2)^{2}$
$\Rightarrow 2 x^{2}=18 \times 18 \times 2$
$x=18$
The area of triangle
$=1 / 2 \times$ base $\times$ height
$=1 / 2 \times 18 \times 18=162 \mathrm{~cm}^{2}$
Ans: b
4. The radius of base and slant height of a cone are in the ratio $3: 7$. If its curved surface area is $1056 \mathrm{~cm}^{2}$, then the radius (in $\mathrm{cm})$ of its base is $\left(\pi=\frac{22}{7}\right)$
a) 16
b) 12
c) 18
d) 24

Sol:

$\pi \mathrm{r} l=1056 \mathrm{~cm}^{2}$
$\frac{22}{7} \times 3 x \times 7 x=1056$
$\frac{22}{7} \times 21 x^{2}=1056$
$21 x^{2}=\frac{1056 \times 7}{22}$
$x^{2}=\frac{1056 \times 7}{22 \times 21}$
$x=4$
$\mathrm{r}=3 \times 4=12 \mathrm{~cm} \quad$ Ans: $\mathbf{b}$
5. The area of an equilateral triangle, inscribed in a circle is $16 \sqrt{3} \mathrm{~cm}^{2}$. The area of the circle in terms of $\pi$ will be-
a) $3 \frac{1}{21} \pi \mathrm{~cm}^{2}$
b) $13 \pi \mathrm{~cm}^{2}$
c) $18 \frac{1}{3} \pi \mathrm{~cm}^{2}$
d) $21 \frac{1}{3} \pi \mathrm{~cm}^{2}$

Sol:


The area of the equilateral triangle
$=\frac{\sqrt{3}}{4} \times$ side $^{2}$
$16 \sqrt{3}=\frac{\sqrt{3}}{4} \times$ side $^{2}$
$\therefore$ side $=8 \mathrm{~cm}$
$\therefore$ The height of the equilateral triangle
$=\frac{\sqrt{3}}{2} \times 8=4 \sqrt{3} \mathrm{~cm}$
The radius of the circum circle $=\frac{2}{3} \times 4 \sqrt{3}=\frac{8}{\sqrt{3}} \mathrm{~cm}$
$\therefore$ The area of the circle
$=\pi \times \frac{8}{\sqrt{3}} \times \frac{8}{\sqrt{3}}=\frac{64}{3} \pi$
$=21 \frac{1}{3} \pi \mathrm{~cm}^{2}$
Ans: d
6. The distance of the point $(12,-9)$ from the origin is
a) 13 units
b) 15 units
c) 12 units
d) 17 units

Sol: Distance
$=\pi \times \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Origin $=(0,0)$
Distance
$\sqrt{(12-0)^{2}+(-9-0)^{2}}$
$\sqrt{144+81}=\sqrt{225}=15$ units
Ans: b
7. In the given figure $\mathrm{AB} \| \mathrm{DE}, \mathrm{AC}$ \| $\mathrm{BD}, \mathrm{DE} \perp \mathrm{BE}, \angle \mathrm{FDC}=45^{\circ}$ and $\angle \mathrm{C}=75^{\circ}$.


What is the measure of $\angle \mathrm{CAB}$ ?
a) $120^{\circ}$
b) $150^{\circ}$
c) $45^{\circ}$
d) $135^{\circ}$

Sol:


Sol:

$\tan 60^{\circ}=\frac{\mathrm{BO}}{\mathrm{OA}}$
$\mathrm{OA}=\frac{\mathrm{OB}}{\sqrt{3}}$
$\mathrm{OA}=\frac{120 \times \sqrt{3}}{3}$
$\mathrm{OA}=40 \sqrt{3} \mathrm{~m}$
Ans: b

## $=105^{\circ}$

IN $\triangle$ OCD
$\angle \mathrm{COD}=180^{\circ}-\left(105^{\circ}+45^{\circ}\right)$
$=30^{\circ}$ Now,
$\angle \mathrm{COD}=\mathrm{CAO}$ (Alternate angle) $\angle \mathrm{CAO}=30^{\circ}$
$\angle \mathrm{CAB}=180^{\circ}-\angle \mathrm{CAO}^{\circ}$ (linear pair)
$\angle \mathrm{CAB}=150^{\circ}$
Ans: b
8. ABCD is a rhombus whose three vertices $A, D$ and $C$ lie on a circle while the $4^{\text {th }}$ vertex $B$ lies on its centre. If the area of rhombus is $8 \sqrt{3} \mathrm{~cm}^{2}$. Find the radius of the circle?
a) 6 cm
b) 8 cm
c) 2 cm
d) 4 cm

Sol:


Let the radius of circle is ' r ' cm $\therefore \mathrm{ABCD}$ is rhombus
$\mathrm{AB}=\mathrm{AD}=\mathrm{CD}=\mathrm{BC}$
Now,
$\mathrm{AB}=\mathrm{BD}=\mathrm{BC}=$ radius $=\mathrm{rcm}$
Thus,
$\triangle \mathrm{BCD}$ and $\triangle \mathrm{BAD}$ are equilateral triangles
Hence, the area of rhombus ABCD
$8 \sqrt{3}=2 \times \frac{\sqrt{3}}{4} r^{2}$
$16=r^{2}$
$\mathrm{r}=4 \mathrm{~cm}$
Ans: d
9. The value of $\sin ^{2} 15^{\circ}+\sin ^{2} 30^{\circ}$ $+\sin ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 75^{\circ}+$ $\sin ^{2} 90^{\circ}$ is -
a) $\frac{3}{2}$
b) $\frac{5}{2}$
c) $\frac{7}{2}$
d) $\frac{9}{2}$

Sol: $\operatorname{Sin}^{2} 15^{\circ}+\sin ^{2} 75^{\circ}+\sin ^{2} 30^{\circ}+$ $\sin ^{2} 60^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 90^{\circ}=$ ? $\Rightarrow\left(\sin ^{2} 15^{\circ}+\cos ^{2} 15^{\circ}\right)+\left(\sin ^{2}\right.$ $\left.30^{\circ}+\cos ^{2} 30^{\circ}\right)+\sin ^{2} 45^{\circ}+\sin ^{2}$ $90^{\circ}$
$=1+1+1 / 2+1$
$=\frac{7}{2}$
Ans: $c$
10. From a cliff 120 m above the shore of a sea, the angle of depression of a ship is $60^{\circ}$. Find the distance from the ship to a point on the shore directly below the observer.
a) $40 \sqrt{ } 2 \mathrm{~m}$
b) $40 \sqrt{3} \mathrm{~m}$
c) $33 \sqrt{ } 3 \mathrm{~m}$
d) $50 \sqrt{3} \mathrm{~m}$

Aboat goes 8 kms an hour in still water, but takes twice as much time in going the same distance
against the current. The speed of the current (in km/hr) is -
a) $2 \mathrm{~km} / \mathrm{hr}$
b) $4 \mathrm{~km} / \mathrm{hr}$
c) $3 \mathrm{~km} / \mathrm{hr}$
d) $5 \mathrm{~km} / \mathrm{hr}$

Sol: Let the speed of the current be $x$ km/h
$\frac{8}{8-x}=2$
$8=16-2 x$
$2 x=8$
$x=4 \mathrm{~km} / \mathrm{hr}$
Ans: b
14. If $\mathrm{a}^{2}+\mathrm{b}^{2}=121$ and $\mathrm{ab}=52$, then value of $\frac{a+b}{a-b}$ is -
a) 0
b) 13
c) $\frac{15}{\sqrt{17}}$
d) $\frac{13}{\sqrt{17}}$

Sol:
$\frac{a+b}{a-b}=\sqrt{\frac{a^{2}+b^{2}+2 a b}{a^{2}+b^{2}-2 a b}}$
$\frac{a+b}{a-b}=\sqrt{\frac{121+2(52)}{121-2(52)}}=\sqrt{\frac{225}{17}}=\frac{15}{\sqrt{17}}$
Ans: c
15. A wooden box measures $18 \mathrm{~cm} \times$ $16 \mathrm{~cm} \times 12 \mathrm{~cm}$. Thickness of wood is 1 cm . How much volume of wood is required to make the box (in cubic cm )? a) $1188 \mathrm{~cm}^{3} \quad$ b) $1388 \mathrm{~cm}^{3}$ c) $1216 \mathrm{~cm}^{3} \quad$ d) $1186 \mathrm{~cm}^{3}$

Sol: The external dimensions of the box are length $=18 \mathrm{~cm}$, Breadth $=16 \mathrm{~cm}$
Height $=12 \mathrm{~cm}$
External volume of the box $=18 \times 16 \times 12 \mathrm{~cm}^{3}$
$=3456 \mathrm{~cm}^{3}$
Thickness of wood $=1 \mathrm{~cm}$ Internal length, breadth and height $=(18-2),(16-2) \&(12-2)$
$=16,14$ and 10 cms
$\therefore$ Internal volume
$=16 \times 14 \times 10=2240 \mathrm{~cm}^{3}$
$\therefore$ The volume of the wood
$=(3456-2240) \mathrm{cm}^{3}$
$=1216 \mathrm{~cm}^{3}$
Ans: c

## 10+10 Tests With Explanations

- Subscribe one time \& Practice any number of times
- Graphical Performance Reports
wwu.sakshieducation.com

