What percent of total spending was on chole bhature?

N. Vinaykumar Reddy

Director, IACE,
Hyderabad.

MODEL QUESTIONS

Directions (Q.No.1-5) : Study the following graph carefully and answer the questions below.

The given pie-chart shows the distribution of spending on different food items.

1. What percent of total spending was on chole bhature?
a) 12.78%
b) 10%
c) 13.9%
d) 11.95%
e) 14.23%
2. The amount spent on prawns is how much percent more than that
on Biryani?
$\begin{array}{ll}\text { a) } 29.50 \% & \text { b) } 26.56 \%\end{array}$
c) 28.65%
d) 35.79%
e) 36.15%
3. If the total amount spent on food items is Rs. 500000, then the amount spent on fish exceeds that on Biryani by: (approx)
a) Rs. 21622 b) Rs. 19622
c) Rs. 15632 d) Rs. 20833 e) Rs. 22623
4. The spendings on others is how much percent less than that on Chicken?
a) 18.89
b) 22.22
c) 24.65
d) 19.44
e) 23.29
5. If the total amount spent on food be Rs. 720000 . Then find the average amount spent on Biryani, others and Chicken? (approx)
a) 82362
b) 85333
c) 85362
d) 86334
e) 89456
6. M and N can do a work in 10 days and 15 days respectively. If M starts on the work and both work alternately day after day. In how many days will the work be completed?
a) 10
b) 12
c) 8
$=\frac{36}{360} \times x=\frac{x}{10}$
Amount spent on others
$=\frac{28}{360} \times x=\frac{7 x}{90}$
\therefore Required percentage
$=\frac{\left(\frac{x}{10}\right)-\left(\frac{7 x}{90}\right)}{x}$ $\frac{x}{10}$
7. b; Given that, total amount spent on food $=720000$ Amount spent on Biryani $=\frac{64}{360} \times 720000=128000$
Amount spent on others
$=\frac{28}{360} \times 720000=56000$
Amount spent on Chicken $=\frac{36}{360} \times 720000=72000$
Required average amount $=\underline{(12800+56000+72000)}$
$=85333.3 \approx 85333$
8. b; Work done in 1 st two days $=\frac{1}{10}+\frac{1}{15}=\frac{3+2}{30}=\frac{1}{6}$
\therefore Number of days $=12$
9. a; Minimum temperature from Monday to Wednesday is $28^{\circ} \mathrm{C}$ \therefore Minimum temperature for 3 days is $28^{\circ} \mathrm{C}$
Minimum temperature from
Thursday to Sunday is $35^{\circ} \mathrm{C}$
\therefore Minimum temperature for 4 days is $35^{\circ} \mathrm{C}$
Now, Sum of minimum temperature for the week
$=(3 \times 28)+(4 \times 35)$
\therefore Sum of minimum

BANK POs, Clerks

Quantitative Aptitude

d) 9
e) None of these
7. The minimum temperature from Monday to Wednesday is $28^{\circ} \mathrm{C}$ and from Thursday to Sunday, it is $35^{\circ} \mathrm{C}$. What is the average minimum temperature for the week?
a) $32^{\circ} \mathrm{C}$
b) $31.5^{\circ} \mathrm{C}$
c) $30^{\circ} \mathrm{C}$
d) $32.5^{\circ} \mathrm{C}$
e) $30.5^{\circ} \mathrm{C}$
8. A sum was put at simple interest at a certain rate for 3 years. Had it been put at 3% higher rate, it would have fetched Rs. 27 more. The sum is?
a) Rs. 400
b) Rs. 250
c) Rs. 300
d) Rs. 500
e) None of these
temperatures $=224$
We know that, Average = Sum of all observations / Number of observations
\therefore Average minimum
temperature $=$ Sum of minimum temperatures/No. of days
= Average minimum
temperature $=224 / 7$
$=$ Average minimum
temperature $=32^{\circ} \mathrm{C}$
8. c; Formula for simple interest. $\mathrm{SI}=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
Where, $\mathrm{P}=$ Principal
$\mathrm{R}=$ Rate of interest
$\mathrm{T}=$ Time period
Let the sum be Rs. X and the original rate be $\mathrm{R} \%$
Then SI $=\frac{x \times R \times 3}{100}$
Where rate is increased by 3% Then $\mathrm{R}=\mathrm{R}+3$
and $\mathrm{SI}=\frac{X \times(\mathrm{R}+3) \times 3}{100}$
According to the question, the difference between the two
equations is Rs. 27
$\therefore \frac{X \times(\mathrm{R}+3) \times 3)}{100}-\frac{\mathrm{X} \times \mathrm{R} \times 3}{100}=27$
$\Rightarrow \frac{3 \mathrm{XR}+9 X-3 X \mathrm{R}}{100}=27$
$\Rightarrow \frac{9 X}{100}=27 \Rightarrow 9 \mathrm{X}=2700$
$\Rightarrow X=\frac{2700}{9} \Rightarrow X=300$
9. d; Amount of mixture $=40 \mathrm{~L}$

Amount of water initially
$=\left(\frac{10}{100}\right) \times 40=4 \mathrm{~L}$
Let ' x ' be the amount of water
9. A mixture of milk and water contain 10% water. Determine the amount of water to be added to the mixture in order to change the water content to 20% if initially, the mixture is of 40 L ?
$\begin{array}{lll}\text { a) } 6 \mathrm{~L} & \text { b) } 6.5 \mathrm{~L} & \text { c) } 5.5 \mathrm{~L}\end{array}$ $\begin{array}{ll}\text { d) } 5 \mathrm{~L} & \text { e) } 4 \mathrm{~L}\end{array}$
10. If the shopkeeper keeps the marked priceof an article to Rs. 2500 and says to give two successive discounts of 15% and 20% and still manages to earn a profit of 10%, find the cost price of the article?
a) Rs. 1525.45 b) Rs. 1545.45
c) Rs. 1595.65 d) Rs. 1625.45 e) Rs. 1725.45

Directions (Q.No. 11-15) :There are 3 school buses: Bus A, Bus B and Bus C. The ratio of boys and girls in Bus A is 3.2. 25\% of all girls are in Bus B and the number of girls in Bus C is 16 more than in Bus B. The ratio of the number of boys in buses B and C is 5:8. There are 220 students in total and the number of students in Buses A and B are equal. There are 100 students in Bus C.
11. What is the overall ratio of the
number of boys to girls in all 3 buses?
$\begin{array}{ll}\text { a) } 7: 3 & \text { b) } 7: 4\end{array}$
$\begin{array}{lll}\text { c) } 8: 3 & \text { d) } 8: 5 & \text { e) } 9: 7\end{array}$
12. What percentage of all girls are in Bus C?
$\begin{array}{ll}\text { a) } 40 \% & \text { b) } 35 \%\end{array}$
c) $50 \% \quad$ d) 45%
e) 55%
13. The sum of the number of girls in Buses A and C is what percent of the sum of the number of boys in the same 2 buses?
b) 80%
c) $75 \% \quad$ d) 48%
e) 64%
14. In Bus B, 15% of the boys and 20% of the girls got out in Kormangala and 8 boys and some girls got out in silk board such that the ratio of boys to girls on bus became 2: 1. How many girls got out in silk board?
$\begin{array}{ll}\text { a) } 1 & \text { b) } 2\end{array}$
$\begin{array}{ll}\text { d) } 4 & \text { e) } 5\end{array}$
15. What is the ratio of the difference between the number of boys and girls in Bus A to the difference between the total number of students in buses B and C?
a) $7: 10$
b) $3: 10$
c) $4: 7$
d) $6: 11$
e) $5: 13$
to be added
$\Rightarrow\left[\frac{(4+x)}{40+x}\right] \times 100=20$
$\Rightarrow 40+10 \mathrm{x}=80+2 \mathrm{x}$
$\Rightarrow 8 \mathrm{x}=40$
$\Rightarrow \mathrm{x}=\frac{40}{8}=5$
$\therefore 5 \mathrm{~L}$ of water is to be added to
the mixture
10. \mathbf{b}; Let the cost price be x

Marked price of article
= Rs. 2500
Price after first discount
$=\left(\frac{85}{100}\right) \times 2500=$ Rs. 2125
Price paid by purchaser
$=\left(\frac{80}{100}\right) \times 2125=$ Rs. 1700
Profit $=10 \%$
$\Rightarrow x+\left(\frac{10}{100}\right) \times x=1700$
$\Rightarrow \mathrm{x}=$ Rs. 1545.45
\therefore Cost price $=$ Rs. 1545.45
11. \mathbf{b}; Sum of the number of students in Buses A and B $=220-100=120$
Number of students in each of
Bus A or Bus B
$=\frac{120}{2}=60$
Number of boys in Bus A
$=\left(\frac{3}{5}\right) * 60=36$
Number of girls in Bus A
$=60-36=24$
Let the total number of girls be ' g '
So, Number of girls in Bus
$\mathrm{B}=\frac{25 \mathrm{~g}}{100}=\frac{3}{4}$
Number of girls in Bus
$\mathrm{C}=\frac{3}{4}+16$ So, $24+\frac{3}{4}+\frac{\mathrm{g}}{4}+16=9$
$\Rightarrow \frac{\mathrm{g}}{2}=40 \Rightarrow \mathrm{~g}=80$
Total number of boys
$=220-80=140$
Sum of the number of boys in
Buses A and B $=140-36=104$
So, $24+\frac{\mathrm{g}}{4}+\frac{\mathrm{g}}{4}+16=9 \Rightarrow \frac{\mathrm{~g}}{2}=40$
$\Rightarrow \mathrm{g}=80$

	Boys	Girls	Total
Bus A	36	24	60
Bus B	40	20	60
Bus C	64	36	100
Total	140	80	220

Total no. of boys $=140$
Total no. of girls $=80$
Required ration $=140: 80=7: 4$
12. d; Required percentage
$=\frac{36}{80} \times 100=45 \%$
13. a; Number of girls in A and $\mathrm{C}=60$

No. of boys in A and $\mathrm{C}=100$
Required percentage $=60 \%$
14. c; Number of boys in Bus B after Koramangala
$=\left(\frac{85}{100}\right) \times 40=34$
Number of girls in Bus B after
Koramangla
$=\left(\frac{80}{100}\right) \times 20=16$
Number of boys after Silk
board in Bus B $=34-8=26$
Number of girls after Silk board
in Bus B $=26 / 2=13$
Number of girls who got out in
Silk board $=16-13=3$
15. b; Required ratio
$=(36-24):(100-60)=3: 10$

