What is the ratio of their savings?

MODEL QUESTIONS

1. The cross-section of a canal is a trapezium in shape. If the canal is 10 m wide at the top and 6 m wide at the bottom and the area of the cross-section is $640 \mathrm{~m}^{2}$, the depth of the cross-section is:
A) 40 m
B) 80 m
C) 160 m
D) 384 m
2. Find the difference between simple interest and compound interest which is calculated annually for two years on Rs. 256 at the rate of 10% per annum (in Rs.):
$\begin{array}{ll}\text { A) } 25.6 & \text { B) } 2.56\end{array}$
C) 1.28
D) 12.8
3. Two trains T_{1} and T_{2} start from stations A and B respectively and go towards B and A at 10 am and 11 am respectively. The speeds of T_{1} and T_{2} are 10 kmph and 15 kmph respectively. At what time will they meet, if A and B are 160 km apart?
A) 4 pm
B) 5 pm
C) 7 pm
D) 6 pm
4. If $\tan ^{2} \theta=\left(1-e^{2}\right)$, then $\sec \theta+\tan ^{3} \theta \operatorname{cosec} \theta=$?
A) $\left(2+e^{2}\right)^{\frac{3}{2}}$
B) $\left(2-\mathrm{e}^{2}\right)^{\frac{3}{3}}$
C) $\left(1-e^{2}\right)^{\frac{3}{2}}$
D) $\left(1+\mathrm{e}^{2}\right)^{\frac{3}{2}}$
5. If the angles of elevation of the
top of a tower from two points distance s and $t(s>t)$ from its foot are 30° and 60° respectively, then the height of the tower is:
A) $\sqrt{s^{2}+t^{2}}$
B) $\sqrt{\mathrm{st}}$
C) $\sqrt{\mathrm{s}^{2}-\mathrm{t}^{2}}$
D) $\sqrt{\frac{s}{t}}$
6. P and Q can finish a work in 30 days. They worked at it for 10 days and then Q left. The remaining work is done by P alone in 20 more days. How long will P take to finish to work alone?
A) 30 days
B) 20 days C) 60 days
D) 50 days
7. A is twice as fast as B and B is thrice as fast as C . The journey covered by C in 56 min will be covered by A in:
A) $5 \frac{1}{3}$ min
B) $2 \frac{1}{3} \mathrm{~min}$
C) $7 \frac{1}{3}$ min
D) $9 \frac{1}{3} \mathrm{~min}$
8. If $x(x+1)+1=0$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
A) -2
B) -1
$\begin{array}{ll}\text { C) } 1 & \text { D) } 2\end{array}$
9. A sum of Rs. 53 is divided among $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in such a way that A gets Rs. 7 more than what B gets and B gets Rs. 8 more than what C gets. The ratio of their shares is:
A) $16: 9: 18$
B) $25: 18: 10$

C) $18: 25: 10$
D) $15: 8: 30$
10. The area of a rhombus is 144 cm^{2}. One of its diagonals is twice the other. The length of the shorter diagonal is:
A) 12 cm
B) $6 \sqrt{2} \mathrm{~cm}$
C) 6 cm
D) 24 cm
11. If the height of a cone is doubled, then the increase in its volume is: $\begin{array}{ll}\text { A) } 100 \% & \text { B) } 200 \%\end{array}$
C) 300%
D) 400%
12. The ratio of incomes of P and Q is $6: 5$ and the ratio of their expenditures is $4: 3$. If P 's expenditure is 4 times his savings, then what is the ratio of their savings?
A) $5: 6$
B) $6: 7$
C) $7: 6$
D) $6: 5$
13. If a, b, c are real and $a^{2}+b^{2}+c^{2}$ $=2(\mathrm{a}-\mathrm{b}-\mathrm{c})-3$, then the value of $2 a-3 b+4 c$ is:
A) -1
B) 0
C) 1
D) 2
14. In a class, there are two sections A and B. If 10 students of section B shift over to section A, the stre ngth of A becomes three times the strength of B . But, if 10 students shift over from A to B, both A and B are equal in strength. How many students are there in sections A and B ?
$\begin{array}{lll}\text { A) } 50 \text { and } 30 & \text { B) } 45 \text { and } 15\end{array}$
$\begin{array}{lll}\text { C) } 90 \text { and } 40 & \text { D) } 80 \text { and } 40\end{array}$
15. If the cost price of three bananas is equal to the selling price of two bananas, then find the percentage of profit.
A) 50%
B) 25%
C) 20%
D) 75%
16. In a recent survey, 40% houses contained two or more people. Of those houses containing only one person, 25% were having only a male. What is the percentage of all houses, which contain exactly one female and no males?
$\begin{array}{lll}\text { A) } 15 & \text { B) } 40 & \text { C) } 75\end{array}$
D) None of these
17. If the length of the side $P Q$ of the rhombus PQRS is 5 cm and $\angle \mathrm{PQR}=120^{\circ}$ then the length of QS, in cm , is:
A) 4
B) 6
C) 3
D) 5
18. Any cyclic parallelogram having unequal adjacent sides is necessarily a:
A) Square
B) Rectangle
C) Rhombus
D) Trapezium
19. The tangents are drawn at the extremities of a diameter AB of a circle with centre P. If a tangent to the circle at the point C intersects the other two tangents at Q and R, then the measure of the $\angle \mathrm{QPR}$ is:
A) 45°
B) 60°
C) 90°
D) 180°
20. The cost price of an article is 64% of the marked price. What is the gain percent if a discount of 12% is allowed?
A) 37.5%
B) 48%
$\begin{array}{ll}\text { C) } 50.5 \% & \text { D) } 52 \%\end{array}$
21. The product of two co-primes is 117. Their L.C.M. should be: $\begin{array}{ll}\text { A) } 1 & \text { B) } 117\end{array}$
C) Equal to their H.C.F.
D) Cannot be calculated
22. $\sqrt{6 \sqrt{2}-2 \sqrt{10}}=$ \qquad
A) $\sqrt{5}-1$
B) $\sqrt{5}+1$
C) $\sqrt[4]{2}(\sqrt{5}+1)$
D) $\sqrt[4]{2}(\sqrt{5}-1)$
23. What is the minimum value of the expression $3 x^{2}+6 x+8$?
A) -4
B) -7
C) 6
D) 5
Solutions
24. B;
d: depth of cross-section $=$
$\frac{1}{2} \times \mathrm{d} \times(\mathrm{a}+\mathrm{b})=640 \mathrm{~m}^{2}$
$\Rightarrow \frac{1}{2} \times \mathrm{d} \times(10+6)=640 \quad \therefore \quad \mathrm{~d}=$
80 m
25. B;

Time saver:
D $=\mathrm{P}\left(\frac{\mathrm{R}}{100}\right)^{2}$
$\mathrm{D}=256\left(\frac{10}{100}\right)^{2}=\frac{256}{100}=$ Rs. 256
3. B; Distance travelled by T_{1} from station A in 1 hour
$=10 \times 1 \mathrm{hr}=10 \mathrm{~km}$
At 11 am , the distance between T_{1} and T_{2} is 150 km
Time taken to meet each other
$=\frac{150}{25}=6 \mathrm{hrs}$.
$=11 \mathrm{am}+6 \mathrm{hrs}=5 \mathrm{pm}$
4. B ;
$\sec \theta+\tan ^{3} \theta \cdot \operatorname{cosec} \theta$
$=\frac{1}{\cos \theta}+\frac{\sin ^{3} \theta}{\cos ^{3} \theta} \cdot \frac{1}{\sin \theta}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{3} \theta}=\frac{1}{\cos ^{3} \theta}=\sec ^{3} \theta$
$\therefore \sec ^{2} \theta=1+\tan ^{2} \theta=1+\left(1-\mathrm{e}^{2}\right)=2-\mathrm{e}^{2}$
$\sec \theta=\left(2-e^{2}\right)^{\frac{1}{2}}$
$\therefore \sec ^{3} \theta=\left(2-\mathrm{e}^{2}\right)^{\frac{3}{2}}$
5. B ;
$\tan 30^{\circ}=\frac{\mathrm{h}}{\mathrm{s}} ; \tan 60^{\circ}=\frac{\mathrm{h}}{\mathrm{t}}$
$\tan 30^{\circ} \times \tan 60^{\circ}=\frac{\mathrm{h}^{2}}{\mathrm{st}}$
$\Rightarrow \frac{\mathrm{h}^{2}}{\mathrm{st}}=\tan 30^{\circ} \times \cot 30^{\circ} \Rightarrow \mathrm{h}^{2}=\mathrm{st}$
$\Rightarrow \mathrm{h}=\sqrt{\mathrm{s}} \mathrm{t}$
6. A ;

Work done by P and Q in 10
days $=\frac{1}{30} \times 10=\frac{1}{3}$
Remaining work $=1-\frac{1}{3}=\frac{2}{3}$
Remaining work was done by P alone in 20 days
\therefore Work done by P in 1 day $=\frac{2}{20}=\frac{1}{30}$

P takes 30 days
alone to complete the work
7. D ;
$\mathrm{A}=2 \mathrm{~B} ; \mathrm{B}=3 \mathrm{C}$ [speeds]
$\mathrm{A}: \mathrm{B}: \mathrm{C}=6: 3: 1$
Time ratio $=1: 2: 6$
Time taken by $\mathrm{A}=\frac{56}{6} \times 1=9 \frac{1}{3} \mathrm{~min}$.
8. A ;
$x+\frac{1}{(x+1)}=0$
$(x+1)+\left(\frac{1}{x+1}\right)=1$
cubing on both sides
$(x+1)^{3}+\frac{1}{(x+1)^{3}}=-2$
9. B;
$A=B+7 ; B=C+8$
$\because A+B+C=53$
$\mathrm{A}+\mathrm{A}-7+\mathrm{A}-15=53 \Rightarrow \mathrm{~A}=25$
Ratio of amounts received by A,
$B \& C=25: 18: 10$
10. A;

Area of rhombus $=1 / 2 \mathrm{~d}_{1} \mathrm{~d}_{2}$
$1 / 2 \times 2 \mathrm{~d}_{2}^{2}=144 \Rightarrow \mathrm{~d}_{2}=12 \mathrm{~cm}\left(\because \mathrm{~d}_{1}=2 \mathrm{~d}_{2}\right)$
11. A;
$\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h} ; \mathrm{V}_{1}=\frac{1}{3} \pi \mathrm{r}^{2} \times 2 \mathrm{~h}$
$\Rightarrow \frac{\mathrm{V}_{1}}{\mathrm{~V}}=\frac{2}{1}$
$\%$ increase in volume
$=1 / 1 \times 100=100 \%$
22. B;
$\frac{\mathrm{I}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{Q}}}=\frac{6}{5} ; \frac{\mathrm{E}_{\mathrm{P}}}{\mathrm{E}_{\mathrm{Q}}}=\frac{4}{3}$
$\mathrm{E}_{\mathrm{P}}=4 \mathrm{~S}_{\mathrm{P}} \Rightarrow \mathrm{E}_{\mathrm{P}}=4\left(\mathrm{I}_{\mathrm{P}}-\mathrm{E}_{\mathrm{P}}\right)$
$\Rightarrow \mathrm{E}_{\mathrm{P}}=\frac{4}{5} \mathrm{I}_{\mathrm{P}} ; \mathrm{E}_{\mathrm{Q}}=\frac{18}{25} \mathrm{I}_{\mathrm{Q}}$
$\frac{\mathrm{S}_{\mathrm{p}}}{\mathrm{S}_{\mathrm{Q}}}=\frac{\mathrm{I}_{\mathrm{p}}-\mathrm{E}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{Q}}-\mathrm{E}_{\mathrm{Q}}}=\frac{\frac{1}{5} \mathrm{I}_{\mathrm{P}}}{\frac{7}{25} \mathrm{I}_{\mathrm{Q}}}=\frac{5}{7} \times \frac{6}{5}=\frac{6}{7}$
13. C.
$\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=2(\mathrm{a}-\mathrm{b}-\mathrm{c})-3$
$(\mathrm{a}-1)^{2}+(\mathrm{b}+1)^{2}+(\mathrm{c}+1)^{2}=0$
$\mathrm{a}=1, \mathrm{~b}=-1, \mathrm{c}=-1$
$2 a-3 b+4 c \Rightarrow 2+3-4=1$
14. A;
$A+10=3(B-10)$
$A-10=B+10$
on solving $A=50, B=30$
15. A;
let c.p. of each banana is Rs. x
$3 x=$ s.p. of two bananas
s.p. of each banana $=\frac{3 x}{2}$

Profit $\%=\frac{\frac{3 x}{2}-x}{x} \times 100=50 \%$
16. D;

Let there are 100 houses
Two or more people
$=40 \%(100)=40$
Only one person (i.e male)
$=25 \%(60)=15$
Only one person (i.e female)
$=60-15=45$
$\%$ of houses only 1 female
$=\frac{45}{100} \times 100=45 \%$
17. D;

O is intersection point of two
diagonals PR and QS
In $\triangle \mathrm{PQO}$
$\cos 60^{\circ}=\frac{\mathrm{QO}}{\mathrm{PQ}}\left[\because \angle \mathrm{PQO}=\frac{1}{2} \angle \mathrm{PQR}\right]$
$\mathrm{QO}=\frac{5}{2} \mathrm{~cm} \quad \therefore \mathrm{QS}=2 \times \mathrm{QO}=5 \mathrm{~cm}$
18. B;
19. C;
$\angle \mathrm{APQ}=\angle \mathrm{QPC}=x^{\circ}$,
$\angle \mathrm{CPR}=\angle \mathrm{RPB}=\mathrm{y}^{\circ}$
$\therefore \angle \mathrm{APQ}+\angle \mathrm{QPC}+\angle \mathrm{CPR}+$
$\angle \mathrm{RPB}=180^{\circ}$
$2(x+y)=180^{\circ} \Rightarrow(x+y)=90^{\circ}$
$[\because \angle \mathrm{QPC}+\angle \mathrm{CPR}]$
20. A;

$$
\text { C.P. }=64 \%(\text { M.P. })
$$

S.P. $=88 \%$ (M.P.)
$\frac{\mathrm{S} . \mathrm{P}}{\mathrm{C} . \mathrm{P}}=\frac{88}{64}=\frac{11}{8}$
Profit $\%=\frac{3}{8} \times 100=37.5 \%$
21. B;
22. D ;
$\sqrt{6 \sqrt{2}-2 \sqrt{10}}=\sqrt{\sqrt{2}(6-2 \sqrt{5})}$
$=\sqrt{\sqrt{2}(\sqrt{5}-1)^{2}}=\sqrt{2}(\sqrt{5}-1)$
23. D;

The expression has its minimum
value at $x=\frac{-\mathrm{b}}{2 \mathrm{a}}=\frac{-6}{2 \times 3}=-1$
Minimum value
$=3(-1)^{2}+6(-1)+8=5$

