The height of the centre of the balloon is..

M.N. Rao
Senior faculty,
Sri Chaitanya Educational institutions

MODEL QUESTIONS

1. A round balloon of radius r subtends an angle α at the eye of an observer, while the angle of elevation of its center is β. The height of the centre of the balloon is
1) $r \sin \alpha \operatorname{cosec}\left(\frac{\beta}{2}\right)$
2) $r \sin \beta \operatorname{cosec}\left(\frac{\alpha}{2}\right)$
3) $r \sin \alpha \sec \left(\frac{\beta}{2}\right)$
4) $r \sin \beta \sec \left(\frac{\alpha}{2}\right)$
2. The distance of the point $(2,1,-2)$
from the line $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-3}{-3}$ measured parallel to the plane $x+2 y+z=4$ is
1) $\sqrt{10}$
2) $\sqrt{20}$
3) $\sqrt{5}$
4) $\sqrt{30}$
3. $\int \frac{5 x^{4}+4 x^{5}}{\left(x^{5}+x+1\right)^{2}} \mathrm{~d} x$
1) $x^{5}+x+1+c$
2) $\frac{x^{5}}{x^{5}-x+1}+c$
3) $x^{-4}+x^{-5}+\mathrm{c}$
4) $\frac{x^{5}}{x^{5}+x+1}+$ c
4. The population of a country increased at a rate proportional to the number of in habitants. If the population which doubles in 30 years, then the population will triple in approximately.
1) 30 years
2) 45 years
3) 48 years 4) 54 years
5. The value of integral

$$
\int_{-1}^{3}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) \mathrm{d} x
$$

is equal to

1) π
2) 2π
3) $\pi / 2$
6. The area bounded by the curve y $=2 x-x^{2}$ and the straight line $\mathrm{y}=$ $-x$ is given by
1) $\frac{9}{2}$
2) $\frac{43}{6}$
3) $\frac{35}{6}$
4) $\frac{13}{6}$
7. A signal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by

station A and then transmitted to station B. The probability of each station receiving the signal correctly is $(3 / 4)$. If the signal received at station B is green, Then the probability that the original signal was green, is
1) $\frac{3}{5}$
2) $\frac{6}{7}$
3) $\frac{20}{3}$
4) $\frac{9}{23}$
8. If $\mathrm{p}: 4$ is an even prime number $q: 6$ is a divisor of 12 and r : the HCF of 4 and 6 is 2 , then which one of the following is true?
1) $p \wedge q$
2) $(p \vee r) \wedge \sim r$
3) $\sim(q \wedge r) \wedge p \quad 4) \sim p \vee(q \wedge r)$
9. Length of latus rectum of ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$, if the normal at an end of latus rectum passes through one extremity of the minor axis, is
1) $2-\sqrt{3}$
2) $6-\sqrt{3}$
3) $6-2 \sqrt{ } 3$
4) $6-2 \sqrt{ } 5$
10. α, β, γ are the angles made by a line with $x, \mathrm{y} \mathrm{z}$ axes in positive direction then the range of $\cos \alpha \cos \beta+\cos \beta \cos \gamma+\cos \gamma \cos \alpha$ is
1) $\left[\frac{-1}{2}, 1\right]$
2) $\left[\frac{-1}{2}, \alpha\right]$
3) $(1, \alpha)$
4) $(1,2]$
11. Given that matrix $A=\left[\begin{array}{lll}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$.

If $x y z=2013$ and $8 x+4 y+3 z=$ 2012 then $\mathrm{A}(\operatorname{adj} \mathrm{A})$ is equal to

1) $\left[\begin{array}{ccc}68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68\end{array}\right]$ 2) $\left[\begin{array}{ccc}34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34\end{array}\right]$
2) $\left[\begin{array}{ccc}29 & 0 & 0 \\ 0 & 29 & 0 \\ 0 & 0 & 29\end{array}\right]$ 4) $\left[\begin{array}{ccc}58 & 0 & 0 \\ 0 & 58 & 0 \\ 0 & 0 & 58\end{array}\right]$
12. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ to the point $5 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$. The total work done by the forces is
1) 30 units
2) 40 units
3) 50 units
4) 20 units
13. It is known that $\sum_{\mathrm{r}=1}^{\infty} \frac{1}{(2 \mathrm{r}-1)^{2}}=\frac{\pi^{2}}{8}$ Then $\sum_{r=1}^{\infty} \frac{1}{r^{2}}$ is
equal to
1) $\frac{\pi^{2}}{24}$
2) $\frac{\pi^{2}}{3}$
3) $\frac{\pi^{2}}{6}$
4) None
14. The no. of points of discontinuity of $\mathrm{f}(x)=[x]\left[x+\frac{1}{4}\right]+\left[x+\frac{1}{2}\right]+\left[x+\frac{3}{4}\right]$ in $(0,1]$ where ([.] denotes Greatest integer function)
$\begin{array}{llll}1) 4 & \text { 2) } 2 & \text { 3) } 8\end{array}$
15. Let $x=\{1,2,3,4,5\}$. The number of different ordered pairs (y, z) that can be formed such that $\mathrm{y} \in x, \mathrm{z} \in x$ and $\mathrm{y} \cap \mathrm{z}$ is empty is
1) 5^{2}
2) 3^{5}
3) 2^{3}
4) 5^{3}

KEY \& HINTS
 1. 2 ; $\sin \frac{\alpha}{2}=\frac{\mathrm{r}}{\mathrm{OP}} \Rightarrow \mathrm{OP}=\operatorname{r\operatorname {cosec}\frac {\alpha }{2}}$

$\sin \beta=\frac{\mathrm{PM}}{\mathrm{OP}}$
$\Rightarrow \mathrm{PM}=\mathrm{OP} \sin \beta=\mathrm{r} \sin \beta \operatorname{cosec} \frac{\alpha}{2}$
2. 4 ;
$\mathrm{A}=(2,1,-2)$
$\stackrel{\text { B }}{\longrightarrow}$
Line: $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-3}{-3}$
B is a point on the given line and $A B$ is parallel to given plane
$\mathrm{B}=(1+2 \lambda,-1+\lambda, 3-3 \lambda)$
D.r's of
$\overline{\mathrm{AB}}=(2 \lambda-1, \lambda-2,-3 \lambda+5)$
$1(2 \lambda-1)+2(\lambda-2)+1(-3 \lambda+5)=0$
$\Rightarrow \lambda=0$
$\mathrm{B}=(1,-1,3)$
3. $4 ;$
$I=\int \frac{\left(\frac{5}{x^{6}}+\frac{4}{x^{5}}\right)}{\left(1+\frac{1}{x^{4}}+\frac{1}{x^{5}}\right)^{2}} d x$ and
putt $=1+\frac{1}{x^{4}}+\frac{1}{x^{5}}$
4. 3 ;
$\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{Kp} \Rightarrow \mathrm{p}=\mathrm{ce}^{\mathrm{kt}}$
if when $t=0, p=p_{0}$ then $p=$ $p_{0} \mathrm{e}^{\mathrm{kt}}$ given when $\mathrm{t}=30, \mathrm{p}=2 \mathrm{p}_{0}$ $\Rightarrow l \mathrm{n}_{2}=30 \mathrm{k}$
\therefore For $3=\mathrm{e}^{\mathrm{kt}} \Rightarrow \mathrm{in} 3=\mathrm{kt}$
$\therefore \mathrm{t}=\frac{\log 3}{\log 2} \cdot 30$
$x \mathrm{t} \cong 48$
5. 1 ;
$\int_{-1}^{3}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) d x$
$=\int_{-1}^{0}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) \mathrm{d} x$
$+\int_{0}^{3}\left(\tan ^{-1} \frac{x}{x^{2}+1}+\tan ^{-1} \frac{x^{2}+1}{x}\right) \mathrm{d} x$
$=\int_{-1}^{0}-\frac{\pi}{2} \mathrm{~d} x+\int_{0}^{3} \frac{\pi}{2} \mathrm{~d} x$
$=\left[-\frac{\pi}{2} x\right]_{-1}^{0}+\left[\frac{\pi}{2} x\right]_{0}^{3}=\pi$
6. 1 ;

Area=
$\int_{0}^{3}\left(2 x-x^{2}+x\right) \mathrm{d} x=\frac{3 x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{x=0} ^{x=3}$
$=\frac{27}{6}=\frac{9}{2}$
7. 3 ;

Consider the events E1,E2,Ei and G
$\mathrm{E}_{1}=\mathrm{A}$ receives the signal correct
$\mathrm{E}_{2}=\mathrm{B}$ receives the signal correct $\mathrm{Ei}=$ signal received by B is green $\mathrm{G}=$ Original signal is green
$P\left(E_{1}\right)=\frac{3}{4}, P\left(E_{2}\right)=\frac{3}{4}$
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{4}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{4}$
$\mathrm{P}(\mathrm{G})=\frac{4}{5}, \mathrm{P}(\overline{\mathrm{G}})=\frac{1}{5}$
$\mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{GE}_{1} \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{G}_{1} \overline{\mathrm{E}}_{2}\right)+$
$\mathrm{P}\left(\overline{\mathrm{G}}_{1} \overline{\mathrm{E}}_{2}\right)+\mathrm{P}\left(\overline{\mathrm{GE}}_{1} \mathrm{E}_{2}\right)$
$P(E)=\frac{4}{5} \times \frac{3}{4} \times \frac{3}{4}+\frac{4}{5} \times \frac{1}{4} \times \frac{1}{4}$
$+\frac{1}{5} \times \frac{3}{4} \times \frac{1}{4}+\frac{1}{5} \times \frac{1}{4} \times \frac{3}{4}$
$=\frac{36+4+3+3}{80}=\frac{46}{80}$
Required probability,
$P(G / E)=\frac{P\left(\mathrm{GE}_{1} \mathrm{E}_{2}\right)+\mathrm{P}\left(\mathrm{G} \overline{\mathrm{E}}_{1} \overline{\mathrm{E}}_{2}\right)}{\mathrm{P}(\mathrm{E})}$

$$
=\frac{\frac{36}{80}+\frac{4}{80}}{\frac{46}{80}}=\frac{20}{23}
$$

8. 4;
P is False; q is true; r is true
9. 4 ;

Normal at ($\mathrm{a}, \mathrm{b}^{2} / \mathrm{a}$) pass through
($0,-\mathrm{b}$)
$\Rightarrow \mathrm{e}^{4}+\mathrm{e}^{2}-1=0 \Rightarrow \mathrm{e}^{2}=\frac{\sqrt{5}-1}{2}$
also
$\mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)=4\left(1-\frac{\sqrt{5}-1}{2}\right)$
$=2(3-\sqrt{5})$

Length of L.R
$=\frac{2 b^{2}}{a}=\frac{4(3-\sqrt{5})}{2}=6-2 \sqrt{5}$
10. 1;
$\ell=\cos \alpha, m=\cos \beta, n=\cos \gamma$
$\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$ and $(\ell+\mathrm{m}+\mathrm{n})^{2} \geq 0$
$\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}+2(\ell \mathrm{~m}+\mathrm{mn}+\mathrm{n} \ell) \geq 0$
$\Rightarrow \ell \mathrm{m}+\mathrm{mn}+\mathrm{n} \ell \geq \frac{-1}{2}$ and
$\Rightarrow \frac{1}{2}\left(\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}-\ell \mathrm{m}-\mathrm{mn}-\ell \mathrm{n}\right) \geq 0$
$\Rightarrow \ell \mathrm{m}+\mathrm{mn}+\mathrm{n} \ell \geq \frac{-1}{2} \Rightarrow\left[\frac{-1}{2}, 1\right]$
11. 3;
$A(\operatorname{adjA})=|A| I ;|A|=29$
12. 2;

Here
$\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}=(4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})+(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
$=7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and
$\overrightarrow{\mathrm{d}}=\overrightarrow{\mathrm{d}}_{2}-\overrightarrow{\mathrm{d}}_{1}=(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})-(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$=4 \hat{i}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$
\therefore work done
$=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{d}}=(7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
$=(7)(4)+(2)(2)+(-4)(-2)$
$=28+4+8=40$ units.
13. 3;

Here,
$\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots . . \infty=\frac{\pi^{2}}{8}$
Let $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots . . \infty=x$
Then, $x=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \infty$
$=\left(\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \infty\right)+$
$+\left(\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots \ldots . \infty\right)$
$=\frac{\pi^{2}}{8}+\frac{1}{4}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \infty\right)$
$=\frac{\pi^{2}}{8}+\frac{1}{4} x$
$\Rightarrow \frac{3 x}{4}=\frac{\pi^{2}}{8} \Rightarrow x=\frac{\pi^{2}}{6}$
14. 1;
$\mathrm{f}(x)=[x]+\left[x+\frac{1}{4}\right]+\left[x+\frac{2}{4}\right]$
$+[x+3 / 4]=[4 x]$

- 14. is disc. At integers i.e.
- $4 x=1$
- $4 x=2$
- $4 x=3$
$4 x=4$
Number of disc. points is 4

15. 2;
$x_{1} \in \mathrm{y}, x_{1} \in \mathrm{Z}$
$x_{1} \notin \mathrm{y}, x_{1} \in \mathrm{z}$
$x_{1} \in \mathrm{y}, x_{1} \notin \mathrm{z} \quad \mathrm{y} \cap \mathrm{z}=\phi$
$x_{1} \notin \mathrm{y}_{1}, x_{1} \notin \mathrm{z}$
Each $x_{1} \in \mathrm{X}$ having 3 chances
$\mathrm{n}(\mathrm{y} \cap \mathrm{z})=3^{5}$
