Find the magnetic field at the centre of..

MODEL QUESTIONS

1. Vernier scale of Vernier calipers has 50 divisions which coincide with 49 main scale divisions. Find the Vernier constant. Given: there are 20 main scale divisions cm^{-1}.
1) $100 \mu \mathrm{~m}$
2) $1000 \mu \mathrm{~m}$
3) $10 \mu \mathrm{~m}$
4) $1 \mu \mathrm{~m}$
2. A particle moves according to the law $\mathrm{a}=-\mathrm{ky}$. Find the velocity as a function of distance y, v_{0} is initial velocity.
1) $v^{2}=v_{0}^{2}-k y^{2}$
2) $v^{2}=v_{0}{ }^{2}-2 k y$
3) $v^{2}=v_{0}^{2}-2 k y^{2}$
4) $v^{2}=v_{0}-k y$
3. Three blocks of mass m_{1}, m_{2} and m_{3} are lying in contact with each other on a horizontal frictionless plane as shown in the figure. If a horizontal force F is applied on m 1 then the force at the constant plane of m_{1} and m_{2} will be

1) $\frac{F\left(m_{2}+m_{3}\right)}{\left(m_{1}+m_{2}+m_{3}\right)}$
2) $\frac{m_{1}+F}{\left(m_{1}+m_{2}+m_{3}\right)}$
3) $m_{1} F$
4) $\frac{F\left(m_{1}+m_{2}\right)}{\left(m_{1}+m_{2}+m_{3}\right)}$
4. A particle is projected upwards.

The times corresponding to height h while ascending and while descending are t_{1} and t_{2} respectively. The velocity of projection will be

1) gt_{1}
2) $g t_{2}$
3) $g t\left(t_{1}+t_{2}\right)$ 4) $\frac{g\left(t_{1}+t_{2}\right)}{2}$
5. Two particles of equal mass have velocities $\overrightarrow{\mathrm{v}}_{1}=2 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$ and $\overrightarrow{\mathrm{v}}_{2}=2 \hat{\mathrm{j}}$ m / s. First particle has an acceleration $\overrightarrow{\mathrm{a}}_{1}=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}) \frac{\mathrm{m}}{\mathrm{s}^{2}}$ while the acceleration of the other particle is zero. The centre of mass of the two particles moves in a
1) circle
2) parabola
3) straight line 4) ellipse
6. A chain of length 1 is placed on a smooth spherical surface of radius r with one of its ends fixed at the top of the surface. Length of chain is assumed to be $l<\pi \mathrm{r} / 2$. Acceleration of each element of chain when upper end is released is

1) $\left.\frac{\lg }{\mathrm{r}}\left(1-\cos \frac{\mathrm{r}}{1}\right) 2\right) \frac{\mathrm{rg}}{1}\left(1-\cos \frac{1}{\mathrm{r}}\right)$
2) $\left.\frac{\lg }{r}\left(1-\sin \frac{1}{r}\right) 4\right) \frac{r g}{1}\left(1-\sin \frac{1}{r}\right)$
7. A smooth semicircular wire track of radius R is fixed in a vertical plane. One end of a massless spring of natural length $3 \mathrm{R} / 4$ is attached to the lowest point O of the wire track. A small ring of mass m which can slide on the track is attached to the other end of the spring. The ring is held

stationary at point P such that the spring makes an angle 60° with the vertical. Spring constant $K=$ mg / R. The spring force is

1) $\frac{m g}{3}$
2) mg
3) $\frac{\mathrm{mg}}{2}$
4) $\frac{\mathrm{mg}}{4}$
8. Find the work done to take a particle of mass m from surface of the earth to a height equal to 2R
1) 2 mg R
2) $\frac{\mathrm{mgR}}{2}$
3) 3 mg R
4) $\frac{2 m g R}{3}$
9. A bar of cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane through the bar making an angle θ with a plane at right angles to the bar. Then shearing stress will be maximum if θ

1) $0^{\circ} \quad$ 2) 30°
2) 45°
3) 90°
10. Uniformly charged long cylinder has volume charge density ρ. Find the electric field at a distance $x<\mathrm{R}$ from the axis of the cylinder

1) $\frac{\rho x}{\varepsilon_{0}}$
2) $\frac{\rho x}{2 \varepsilon_{0}}$
3) $\frac{\rho x}{3 \varepsilon_{0}}$
4) $\frac{\rho x}{4 \varepsilon_{0}}$
11. $E=20 \hat{\mathrm{i}}+30 \hat{\mathrm{j}}$ exists in space. If the potential at the origin is taken to be zero, find the potential at $\mathrm{P}(3$, 2).
1) -150 V
2) -100 V
3) +150 V
4) -120 V
12. The electric field strength due to a ring of radius R at a distance x from its centre on the axis of ring carrying charge Q is given by $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Qx}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}$.
t what distance from the centre will the electric field be maximum?
1) $x=R$
2) $x=R / 2$
3) $x=R / \sqrt{2}$
4) $x=\sqrt{\mathrm{R} / 2}$
13. In the following circuit the resistance of wire $A B$ is 10Ω and its length is 1 m . Rest of the quantities are given in the diagram. The potential gradient on the wire will be
1) $0.08 \mathrm{~V} / \mathrm{m} \quad$ 2) $0.008 \mathrm{~V} / \mathrm{m}$
2) $0.8 \mathrm{~V} / \mathrm{m}$
3) $8.0 \mathrm{~V} / \mathrm{m}$
14. A thin disc (or dielectric) having
radius r and charge q distributed uniformly over the disc is rotated n rotations per second about its axis. Find the magnetic field at the centre of the disc.
1) $\frac{\mu_{0} q n}{a}$
2) $\frac{\mu_{0} q n}{2 a}$
3) $\frac{\mu_{0} q n}{4 a}$
4) $\frac{3 \mu_{0} q n}{4 a}$
15. The coercive force for a certain permanent magnet is 4×10^{4} Am^{-1}. This magnet is placed in a long solenoid having 20 turns per cm . What current be passed to completely demagnetize it?
1) 10 A
2) 20 A
3) 40 A
4) 25 A
16. A long wire carries a current 5 A . The energy stored in the magnetic field inside a volume 1 mm^{3} at a distance 10 cm from the wire is
1) $\frac{\pi}{4} \times 10^{-13} \mathrm{~J}$
2) $\frac{\pi}{2} \times 10^{-13} \mathrm{~J}$
3) $\pi \times 10^{-13} \mathrm{~J}$
4) $\frac{\pi}{8} \times 10^{-13} \mathrm{~J}$
17. Magnetic flux during time interval τ varies through a stationary loop of resistance R as $\phi_{B}=$ at $(\tau-\mathrm{t})$. Find the amount of heat generated during that time. Neglect the inductance of the loop.
1) $\frac{a^{2} \tau^{3}}{R}$
2) $\frac{a^{2} \tau^{2}}{2 R}$
3) $\frac{a^{2} \tau^{3}}{3 R}$
4) $\frac{a^{2} \tau^{3}}{4 R}$
18. An alternating current is given by $\mathrm{i}=\mathrm{i}_{1} \cos \omega \mathrm{t}+\mathrm{i}_{2} \sin \omega \mathrm{t}$. The rms current is given by
1) $\frac{i_{1}+i_{2}}{\sqrt{2}}$
2) $\frac{\left|i_{1}+i_{2}\right|}{\sqrt{2}}$
3) $\sqrt{\frac{i_{1}{ }^{2}+i_{2}{ }^{2}}{2}}$
4) $\sqrt{\frac{i_{1}{ }^{2}+i_{2}{ }^{2}}{\sqrt{2}}}$

Solutions

1) 3; $\mathrm{V}=\frac{1}{50} \times($ value of 1 MSD$)$
$=\frac{1}{50} \times \frac{1}{20}=0.001 \mathrm{~cm}$
2) 1 ; $a=\frac{d v}{d t}=\frac{d v}{d y} \cdot \frac{d y}{d t}$
$\int_{v_{0}}^{v} \mathrm{vdv}=\int_{0}^{\mathrm{y}}-\mathrm{kydy} \Rightarrow \mathrm{v}_{0}^{2}-\mathrm{v}^{2}=k \mathrm{ky}^{2}$
3) $1 ; \xrightarrow{\mathrm{F}}\left|\mathrm{m}_{1}\right| \stackrel{\stackrel{a}{\mathrm{~F}_{1}}}{\mathrm{~m}_{2}}\left|\mathrm{~m}_{3}\right|$
$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}} ; \mathrm{F}_{1}=\left(\mathrm{m}_{2}+\mathrm{m}_{3}\right) \mathrm{a}$
$\mathrm{F}_{1}=\frac{\mathrm{m}_{2}+\mathrm{m}_{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}} \mathrm{~F}$
4) 4 ;

$\frac{2 \mathrm{u}}{\mathrm{g}}=\mathrm{t}_{1}+\mathrm{t}_{2}$
5) 3 ;
$\mathrm{V}=\mathrm{V}_{\mathrm{x}}+\mathrm{V}_{\mathrm{y}}=\int_{0}^{3}-\mathrm{E}_{\mathrm{x}} \mathrm{dx}+\int_{0}^{2}-\mathrm{E}_{\mathrm{y}} \mathrm{dy}$
$=\int_{0}^{3}-20 \mathrm{dx}+\int_{0}^{2}-30 \mathrm{dx}=-60-60=-120 \mathrm{~V}$
6) 3; $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Qx}}{\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}$

For maximum electric field
$\frac{d E}{d x}=0 \quad x=\frac{R}{\sqrt{2}}$
13) 3 ;
$\phi=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{L}}=\frac{\mathrm{iR}_{\mathrm{AB}}}{\mathrm{L}}=\frac{2}{25} \times \frac{10}{1}$
$\phi=0.8 \mathrm{~V} / \mathrm{m}$
14) 1 ; Surface charge density $\sigma=\frac{q}{\pi a^{2}}$ Charge on the hypothetical ring
$B=\int d B=\frac{\mu_{0} q n}{a^{2}} \int_{0}^{a} d x=\frac{\mu_{0} q n}{a^{2}}[x]_{0}^{a}=\frac{\mu_{0} q n}{a}$
15) 2 ; $\mathrm{H}=\mathrm{nI}$
$\therefore \mathrm{n}=20 \mathrm{~cm}^{-1}=2000 \mathrm{~m}^{-1}$
$\mathrm{I}=\frac{4 \times 10^{4}}{2000}=20 \mathrm{~A}$
16) 4 ; u (energy per unit volume) $=\frac{B^{2}}{2 \mu_{0}}$ and energy $U=\frac{B^{2}}{2 \mu_{0}} \times$ vol.
$\mathrm{U}=\left(\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{~d}}\right)^{2} \times \frac{1}{2 \mu_{0}} \times$ vol.
$=\frac{\mu_{0} \mathrm{i}^{2}}{8 \pi^{2} \mathrm{~d}^{2}} \times$ vol. $=\frac{\pi}{8} \times 10^{-13} \mathrm{~J}$
17) $3 ; i=\frac{d \phi}{d t} / R=\frac{a(\tau-2 t)}{R}$

Heat produced .
$H=\int_{0}^{\tau} i^{2} R d t=\int_{0}^{\tau} \frac{a^{2}(\tau-2 t)^{2}}{R}=\frac{a^{2} \tau^{3}}{3 R}$
$\mathrm{i}=\mathrm{i}_{1} \sin \left(\omega \mathrm{t}+\frac{\pi}{2}\right)+\mathrm{i}_{2} \sin \omega \mathrm{t}$
$x=\mathrm{R}-\frac{3 \mathrm{R}}{4}=\frac{\mathrm{R}}{4}$
$\mathrm{F}=\mathrm{Kx}=\frac{\mathrm{mg}}{\mathrm{R}}\left(\frac{\mathrm{R}}{4}\right)=\frac{\mathrm{mg}}{4}$
8) 4; $\mathrm{W}=\Delta \mathrm{PE}=\mathrm{GMm}\left[\frac{1}{\mathrm{R}}-\frac{1}{3 \mathrm{R}}\right]$
$=\frac{2 \mathrm{GMm}}{3 \mathrm{R}}=\frac{2}{3} \mathrm{gmR}$
Shear stress $=\frac{F \sin \theta}{\mathrm{~A} / \cos \theta}=\frac{\mathrm{F} \sin 2 \theta}{2 \mathrm{~A}}$
Shear stress will be maximum if
$\sin 2 \theta=1$ or $2 \theta=90^{\circ}$ i.e. $\theta=45^{\circ}$.
10) 2 ;

Assume a hypothetical cylinder of radius x and length 1 . Apply Gauss's law $\oint E \cdot d s=\frac{q_{\text {in }}}{\varepsilon_{0}}$ or
$\oint \mathrm{E} \cdot \mathrm{ds}=\frac{\pi \mathrm{x}^{2} \mathrm{l} \rho}{\varepsilon_{0}}$
$\mathrm{E}(2 \pi x l)=\frac{\pi \mathrm{x}^{2} l \rho}{\varepsilon_{0}} \Rightarrow \mathrm{E}=\frac{\rho \mathrm{x}}{2 \varepsilon_{0}}$
11) 4;

Magnetic field due to the element
$\mathrm{dB}=\frac{\mu_{0} \mathrm{dI}}{2 \mathrm{x}}=\frac{\mu_{0} 2 \mathrm{xdxqn}}{\mathrm{a}^{2}(2 \mathrm{x})}=\frac{\mu_{0} \mathrm{qndx}^{2}}{\mathrm{a}^{2}}$
18) 3 ; $i_{\text {rms }}=\frac{i_{0}}{\sqrt{2}}$
$\mathrm{i}_{0}=\sqrt{\mathrm{i}_{1}^{2}+\mathrm{i}_{2}^{2}}$

