Send your Feedback to vidya@sakshi.com

Find the magnetic field at the centre of..

Dr. Ch.RamaKrishna Subject expert

MODEL QUESTIONS

ನಾಕ್ಷಿ ವಿರ್ಯ

- Vernier scale of Vernier calipers has 50 divisions which coincide with 49 main scale divisions. Find the Vernier constant. Given: there are 20 main scale divisions cm⁻¹.
 - 1) 100 μm 2) 1000 μm
 - 3) 10 μm 4) 1 μm
- 2. A particle moves according to the law a = -ky. Find the velocity as a function of distance y, v_0 is initial velocity. 1) $v^2 = v_0^2 - ky^2$ 2) $v^2 = v_0^2 - 2ky$ 3) $v^2 = v_0^2 - 2ky^2$ 4) $v^2 = v_0 - ky$
- 3. Three blocks of mass m_1 , m_2 and m_3 are lying in contact with each other on a horizontal frictionless plane as shown in the figure. If a horizontal force F is applied on m1 then the force at the constant

The times corresponding to height h while ascending and while descending are t_1 and t_2 respectively. The velocity of projection will be 1) gt₁ 2) gt₂

3)
$$gt(t_1 + t_2)$$
 4) $\frac{g(t_1 + t_2)}{2}$

- 5. Two particles of equal mass have
 - velocities $\vec{v}_1 = 2\hat{i}$ m/s and $\vec{v}_2 = 2\hat{j}$ m/s. First particle has an

acceleration $\vec{a}_1 = (3\hat{i} + 3\hat{j})\frac{m}{s^2}$ while

the acceleration of the other particle is zero. The centre of mass of the two particles moves in a

- circle
 parabola
 straight line
 ellipse
- 6. A chain of length 1 is placed on a smooth spherical surface of radius r with one of its ends fixed at the top of the surface. Length of chain is assumed to be $l < \pi r/2$. Acceleration of each element of chain when upper end is released

JEEE JEEE Main PHYSICS *Special*

stationary at point P such that the spring makes an angle 60° with the vertical. Spring constant K = mg/R. The spring force is

1) $\frac{mg}{3}$ 2) mg

 $3) \frac{\mathrm{mg}}{2} \qquad \qquad 4) \frac{\mathrm{mg}}{4}$

8. Find the work done to take a particle of mass m from surface of the earth to a height equal to 2R
1) 2 mg P 2) ^{mgR}

$$2 \text{ mg R}$$
 2) $\frac{\text{mg}}{2}$

1) 0°
 2) 30°
 3) 45°
 4) 90°
 10. Uniformly charged long cylinder has volume charge density ρ. Find the electric field at a distance x < R from the axis of the cylinder

11. E = 20î + 30ĵ exists in space. If the potential at the origin is taken to be zero, find the potential at P(3, 2).
1) -150 V 2) -100 V
3) +150 V 4) -120 V
12. The electric field strength due to a ring of radius R at a distance x from its centre on the axis of ring carrying charge Q is given by

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Qx}{(R^2 + x^2)^{3/2}}.$$
 At what

distance from the centre will the electric field be maximum? 1) x = R 2) x = R/2 radius r and charge q distributed uniformly over the disc is rotated n rotations per second about its axis. Find the magnetic field at the centre of the disc.

$$\begin{array}{l} 1) \frac{\mu_0 qn}{a} \\ 3) \frac{\mu_0 qn}{4a} \\ \end{array} \begin{array}{l} 2) \frac{\mu_0 qn}{2a} \\ 4) \frac{3\mu_0 qn}{4a} \end{array}$$

15. The coercive force for a certain permanent magnet is 4 × 10⁴ Am⁻¹. This magnet is placed in a long solenoid having 20 turns per cm. What current be passed to completely demagnetize it?
1) 10A 2) 20A
3) 40A 4) 25 A
16. A long wire carries a current 5 A. The energy stored in the magnetic field inside a volume 1 mm³ at a distance 10 cm from the wire is

1)
$$\frac{\pi}{4} \times 10^{-13} \text{ J}$$
 2) $\frac{\pi}{2} \times 10^{-13} \text{ J}$
3) $\pi \times 10^{-13} \text{ J}$ 4) $\frac{\pi}{8} \times 10^{-13} \text{ J}$

17. Magnetic flux during time interval τ varies through a stationary loop of resistance R as $\phi_B = at (\tau - t)$. Find the amount of heat generated during that time.

plane of m and my will be

$$\frac{1}{p} \frac{m}{(1 + m_{1}^{2} + 1)} \frac{1}{p} \frac{1}{(1 + m_{1}^{2} + 1)} \frac{1}{p} \frac{1}{$$

