Send your Feedback to vidya@sakshi.com

What is the Wavelength of the electron..

K. Vijay Bhasker Senior faculty, Sri Chaitanya Educational institutions

MODEL QUESTIONS

ನಾತ್ರಿ ವಿಧ್ಯ

- Which of the following set of transition metal of 3d-series have maximum and minimum melting point respectively?
 1) Cr and Mn 2) Fe and Zn
 3) Cr and Cu 4) Fe and Hg
- 2. At the given condition of CH₄-O₂ fuel cell the cell emf is 0.8 V and the enthalpy of combustion of CH₄(g) is -772 kJ/mol.The maximum efficiency of the given fuel cell in the given condition is:

 60 %
 75 %
 80 %
 90 %
- **3.** Which of the following is NOT true ?
 - 1) The catalyst ZSM–5 converts alcohols directly into gasoline (petrol).
 - 2) Charge on Lyophilic colloids depends on pH of medium.
 - 3) The charged colloidal particles

Reduction 3) CuFeS₂ : Fro

- 3) CuFeS₂ : Froth floatation
 4) FeS₂ : Self Reduction
- 5. What is the pH of the solution obtained by mixing equal volumes of two solutions having pH values 9 and 11.Assume no components of the two solutions reacts. [Given : $\log 5 = 0.7$]
- 3) 11.3 4) 10.3
 6. A species 'X' can show reaction with both HCl and NaOH. 'X'
 - cannot be :
 - 1) Al_2O_3 2) Zn
 - 3) PbS 4) $ZnCO_3$
- 7. The molar mass of a gas is 50 g/mol.The density of the gas at critical temperature and critical pressure of 30 atm is 125 g/L.What is the critical temperature of the gas?
 [Take: R =0.08 L atm mol⁻¹ K⁻¹]
 1) 200 K 2) 500 K
- 3) 300 K 4) 400 K
 8. The ionic radii (in Å) of N³⁻, O², F⁻ are respectively
 - 1) 1.71, 1.40 and 1.36 2) 1.71, 1.36 and 1.40
 - 3) 1.36, 1.40 and 1.71
 - 4) 1.36, 1.71 and 1.40

JEE Main Chemistry Special

- 1) $[NiCl_4]^{2-}$ 2) $[PtCl_4]^{2-}$ 3) $[Fe(NH_3)_6]^{2+}$ 4) $[FeF_6]^{3-}$
- 11. A mixture of NaHC₂O₄ and $H_2C_2O_4$ requires 50mL, 0.1 MKMnO₄ (aq.) solution during titration in Acidic medium. The same mass of NaHC₂O₄ and $H_2C_2O_4$ requires 50mL, 0.4M NaOH (aq.) solution for the complete neutralisation. Calculate the mass of $H_2C_2O_4$ in the initial mixture.
 - 1) 1.250 g2) 0.900 g3) 0.450 g4) 0.675 g
- 12. In which of the following option the property of the given substance is wrongly matched?

3) 33.33 g 4) 40 g **14.** Which of the following option is incorrect about NO₂ and ClO₂? 1) Both are paramagnetic species 2) Both have bent shape 3) Both compounds dimerised readily. 4) Both have sp^2 hybridisation **15.** Which statement is incorrect ? 1) Proline has 2° amine group 2) D-Glucose and D-Fructose form same product on reduction by red P / HI 3) D-Glucose and D-Mannose form different product on reaction with 3 eq. of phenyl hydrazine.

3) Polystyrene4) Glyptal

- 18. An optically active compound (A) has the molecular formula C₆H₁₀. The compound gives a ppt. when treated with Ag(NH₃)₂OH. On catalytic hydrogenation, A yields $B(C_6H_{14})$ which is only optically inactive. Identify the total number of Alpha H in product formed by treatment of A with O_3/H_2O_2 then LAH and then $H^+/$ Heat . 1) 7 2) 6 3) 8 4) 9
- **19.** which of the following will give cannizaro reaction

4.	 of the sol formed by addition of FeCl₃ in excess NaOH_(aq.) moves towards cathode during electrophoresis. 4) Physisorption is reversible in nature Select the incorrect match for the extraction process involved for the given metal ore. 1) Cu₂S : Self reduction 2) CuCO₃.Cu(OH)₂:Carbon 	 9. A photon of energy 9.4 eV strikes to the electron present in third excited state of He⁺. What is the Wavelength of the electron after absorption of the 9.4 eV energy of the photon ? 4 Å 5 Å 6.65 Å 10. In which of the following complex, ligands are considered as strong field ligands (SFL)? 	1) CrO_2 - Ferromagnetic 2) MnO - Antiferromagnetic 3) C_6H_6 - Ferrimagnetic 4) Fe_3O_4 - Ferrimagnetic 13. Calculate the weight of urea which must be dissolved in 490 g water so that the solution obtained has vapour pressure 2% less than vapour pressure of pure water. 1) 60 g 2) 30 g	 4) Sucrose is non reducing carbohydrate 16. Which of the following agents is responsible for generating chlorine radicals into stratosphere? Smog Smog NO2 UV radiation CFC 17. Which one is a copolymer? PVC Polypropene 	 1) 2-Butanone 2) Cyclo pentanone 3) 2-Methyl Propanone 4) Glyoxal 20. In which of the following pairs at least one of the compounds give positive Tollens test? 1) Glucose and sucrose 2) Glucose and fructose 3) Fructose and sucrose 4) All
	KEY WITH SOLUTIONS	6. 3; PbS + HC $l_{(aq.)} \rightarrow$ no reaction	in 2^{nd} titration: a + 2b = 20(ii)	\rightarrow 3-Methyl Butanoic acid LAH \rightarrow 3-Methyl But 1-ol	OHC- CHO (glyoxal) do not have alpha hydrogen
1.	3;	$PbS + NaOH \rightarrow no reaction$	on solving (i) and (ii) $b = 7.5$	3-Methyl But 1-olH ⁺ /Heat	20. 4;
2	Theory based	7. 4; VC = (50/125) L / mol	$\therefore m_{H_2C_2O_4} = \left(\frac{7.5}{1000}\right) \times 90g = 0.675 g$	\rightarrow 2-Methyl But 2-ene 19. 4;	Glucose, Fructose, Maltose are
Ζ.	3;	VC =(50/125) L / mol = 0.4 L / mol	12. 3;	19. 4,	reducing sugars.
	$\Delta G = -nFE_{cell}$	Zc = (PcVc)/RTc=3/8	Memory based		
	$= (-8 \times 96500 \times 0.8) \text{ J/mol}$	Tc = (8PcVc)/3R =	13. 3;	RAIL	AY RECRUITMENT BOARD
	∴% efficiency	$\frac{(8 \times 30 \times 0.4)}{(3 \times 0.08)} = 400 \mathrm{K}$	(P0-Ps/Ps) = n/N		
	$=\frac{-8\times96500\times0.8}{772}\times100\%$		(100-98/98) = (m/60)/(490/18)		
2	-772×1000	8. 1;	m = 33.33g	Walter Contraction	
	3; Theory based	Order of ionic radii $N^{3-} > O^{2-} > F^{-}$	14. 3; Dimerisation tendency of		
4.	4; Self reduction is done for		$NO_2 > ClO_2$		C True II
	sulphide ores. FeS_2 is not		Reason : Odd e^- is localized in		The second secon
	suphide ore. so carbon reduction		NO_2 and delocalized in ClO_2	ನಾತ್ರಿ	
	is done for FeS ₂ . Self reduction is		15. 3;		
_	done for Pb, Hg and Cu.	Wavelength = $(150/6)^{\frac{1}{2}} = 5A0$	D-glucose and D-Mannose are	SAKSHI EDUCATION	
5.	2;	10. 2;	C ₂ epimers and form the same	DDD CDOUD D	
	For the solution $1 : pH = 9$ $\therefore pOH = 5 \therefore [OH^{-1}]_1 = 10^{-5} M$	All ligands act as SFL for 4d & 5d series elements, so in	osazone.	RRB GROUP-D	& NIPCS
	For the solution 2 : $pH = 11$	$[PtCl_4]^{2-}$, ligand are considered	Theory based		
	$\therefore \text{pOH} = 3 \therefore [\text{OH}^-]_2 = 10^{-3} \text{ M}$	as SFL	17. 4;	 Guidance 	Model Papers
	Resultant $[OH^-] =$	11. 4;	Glyptal is made from poly-		-
	$(10^{-3} + 10^{-5})/2 = 5 \times 10^{-4} \text{ M}$	Let n NaHC ₂ O ₄ be 'a' mol&n	merization of ethylene glycol and	 Study Material 	Practice Tests
	$\therefore \text{pOH} = -\log(5 \times 10^{-4})$	NaHC ₂ O ₄ be 'b' mol	pthalic acid.	 Previous Papers 	Mock Tests
	= 4 - 0.7	In 1st titration : (2a) $(2b)$ 0.1	18.4; 2 Mathul Dut 1 and White		
	:. Resultant pH = $14 - (4 - 0.7)$	$\left(\frac{2a}{5}\right) + \left(\frac{2b}{5}\right) = \frac{0.1}{50}$	3-Methyl But 1-ene \longrightarrow White Ppt	ynyw cakchio	ducation.com
	= 14 - (4 - 0.7) = 10.7	a+b = 12.5(i)	3-Methyl But 1-ene -ozonalysis-		
	10 010 III				

