Find the equation of the curve passing through..

M.N. Rao
Senior faculty,
Sri Chaitanya Educational
institutions

MODEL QUESTIONS

1. Let p and q be the roots of equation $x^{2}-2 x+\mathrm{A}=0$ and let ' r ' and ' s ' be the roots of the equation $x^{2}+18+\mathrm{b}=0$ if $\mathrm{p}<\mathrm{q}$ $<\mathrm{r}<\mathrm{s}$ are in A.P, then value of 'A', 'B' are
1) $\mathrm{A}=3, \mathrm{~B}=77$
2) $\mathrm{A}=3, \mathrm{~B}=7$
3) $\mathrm{A}=-3, \mathrm{~B}=77$
4) $A=3, B=-7$
2. The equation of the tangent, to the curve $\mathrm{y}=\mathrm{e}^{-|x|}$ at the point where the curve cuts the line $x=$ 1 , is

$$
\begin{array}{ll}
\text { 1) } x+y=\mathrm{e} & \text { 2) } \mathrm{e}(x+y)=1
\end{array}
$$

$$
\text { 2) } y+e x=1 \quad \text { 4) } x-e y=0
$$

3. If the sum of squares of roots of equation $x^{2}-(\sin \alpha-2) x-(1+$ $\sin \alpha)=0$ is least then $\alpha=$
1) 90°
2) 70°
3) 20°
4) 60°
4. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c, d are the length of the
sides of the quadrilateral, then a^{2} $+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}$ lies in
1) $[1,3]$
2) $[1,4]$
3) $[2,3]$
4) $[2,4]$
5. A line through $\mathrm{A}(-5,-4)$ meets the line $x+3 y+2=0,2 x+y$ $+4=0$ and $x-y-5=0$ at B, C and D respectively.

If $\left(\frac{15}{\mathrm{AB}}\right)^{2}+\left(\frac{10}{\mathrm{AC}}\right)^{2}=\left(\frac{6}{\mathrm{AD}}\right)^{2}$,
then the equation of the line is

1) $2 x+3 y+22=0$
2) $5 x-4 y+7=0$
3) $3 x-2 y+3=0$
4) None of these
6. The weighted mean of first n natural numbers whose weights are equal to the number of selections out of n natural numbers of corresponding numbers respectively is
1) $\frac{n \cdot 2^{n-1}}{2^{n}-1} \quad$ 2) $\frac{3 n(n+1)}{2(2 n+1)}$
2) $\frac{(n+1)(2 n+1)}{6}$
3) $\frac{n(n+1)}{2}$
7. The distance between the line $\mathrm{r}=2 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}+\lambda(\mathrm{i}-\mathrm{j}+4 \mathrm{k})$ and the plane $\mathrm{r} .(\mathrm{i}+5 \mathrm{j}+\mathrm{k})=5$
1) $\frac{10}{3 \sqrt{3}}$
2) $\frac{10}{9}$

Mathematics
3) $\frac{10}{3}$
4) $\frac{3}{10}$
8. Find the equation of the curve passing through (1, 2) whose differential equation is $\mathrm{y}\left(x+\mathrm{y}^{3}\right)$ $\mathrm{d} x=x\left(\mathrm{y}^{3}-x\right) \mathrm{dy}$

1) $x y=1 \quad$ 2) $x^{2}-y^{2}=1$
2) $y^{3}+2 x=5 x^{2}$
3) $x^{2}-y+3=0$
9. Let $\mathrm{a}=111 \ldots . .1$ (55 digits), $\mathrm{b}=1$ $+10+10^{2}+\ldots .10^{4}, c=1+10^{5}+$ $10^{10}+10^{15}+\ldots+10^{50}$, then 1) $a=b+c \quad$ 2) $a=b c$
3) $b=a c$
4) $c=a b$
10. The area of the region bounded by the curves $\mathrm{y}=9 x^{2}$ and $\mathrm{y}=$ $5 x^{2}+4$ (in square units) is
1) $\frac{16}{3}$
2) $\frac{64}{3}$
3) $\frac{32}{3}$
4) 64
11. Let A be the set of all determinants of order 3 with entries 0 or 1 only, B is the subset of A consisting of all determinants with value 1 , and C is the subset consisting of all determinants with value -1 . Then if $n(B)$ and $\mathrm{n}(\mathrm{C})$ denote the number of elements in B and C, respectively, we have
1) $C=\phi$
2) $n(B)=n(C)$
3) $A=B$
4) $n(B)=2 n(C)$
12. The sum of two positive integers is 200 then chance that their product is greater than $3 / 4$ times their greatest product probability is
1) $\frac{51}{99}$
2) $\frac{99}{199}$
3) $\frac{1}{2}$
4) $\frac{1}{3}$
13. If $\int \frac{\left(2 x^{2}+1\right) \mathrm{d} x}{\left(x^{2}-4\right)\left(x^{2}-1\right)}=$
$\log \left[\left(\frac{x+1}{x-1}\right)^{\mathrm{a}}\left(\frac{x-2}{x+2}\right)^{\mathrm{b}}\right]+\mathrm{C}$, then
the values of a and b are respectively
1) $1 / 2,3 / 4$
2) $-1,3 / 2$
3) $1,3 / 2$
4) $-1 / 2,3 / 2$
5) $\int_{0}^{\pi / 2} \frac{\sin ^{2} 9 x}{\sin x} \mathrm{~d} x=$
6) $1+\frac{1}{2}+\frac{1}{3}+\ldots . . .+\frac{1}{9}$
7) $\frac{1}{2}+\frac{1}{4}+\ldots \ldots . .+\frac{1}{18}$
8) $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots \ldots .+\frac{1}{19}$
9) $1+\frac{1}{3}+\frac{1}{5}+\ldots \ldots+\frac{1}{17}$
15. If $(x)=\left\{\begin{array}{cr}x^{\alpha} \log x, x>0 \\ 0 & , x=0\end{array}\right.$ and Rolle's theorem is applicable to $\mathrm{f}(x)$ for x [0,1] then is equal to
1) $-2 \quad 2)-1$
2) $0 \quad 4)^{1 / 2}$
16. The expression

$$
\left.\frac{1}{\sqrt{4 x+1}}\left[\frac{1+\sqrt{4 x+1}}{2}\right]^{7}-\left[\frac{1-\sqrt{4 x+1}}{2}\right]^{7}\right]
$$

is a polynomial in x of degree

1) 7
2) 5
3) 4 4) 3
17. A tangent is drawn to the circle $2\left(x^{2}+y^{2}\right)-3 x+4 y=0$ and it touches the circle at point 'A'. The tangent passes through the point $\mathrm{P}(2,1)$. Then $\mathrm{PA}=$
1) 4
2) 2
$\begin{array}{ll}\text { 3) } 2 \sqrt{2} & \text { 4) } 8\end{array}$
18. Range of values K of for which the point $(k,-1)$ is exterior to both the parabolas $\mathrm{y}^{2}=|x|$ is
1) $(-1,0)$
2) $(-1,1)$
3) $(0,1)$
4) $(0,-1)$

KEY \& HINTS

1. 3 ;

Let roots are
$a-3 d, a-d, a+d, a+3 d$
$\mathrm{p}+\mathrm{q}=2, \mathrm{pq}=\mathrm{A}, \mathrm{r}+\mathrm{s}=18, \mathrm{rs}=\mathrm{B}$ $\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}=4 \mathrm{a}=20 \Rightarrow \mathrm{a}=5$
$p+q=a-3 d+a-d \Rightarrow d=2$
Numbers are $-1,3,7,11$
$\mathrm{pq}=-3=\mathrm{A}$
$B=r s=77$
2. 4 ;

Point of intersection is $\left(1, \frac{1}{e}\right)$,
and slope $=\frac{1}{e}$
3. 1 ;
$\mathrm{S}=\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=\sin ^{2} \alpha-2 \sin \alpha+5$
$=(\sin \alpha-1)^{2}+5 \Rightarrow \alpha=90^{\circ}$
4. 4 ;
$a^{2}+b^{2}+c^{2}+d^{2}$
$=\sum(1-x)^{2}+\mathrm{y}^{2}=\sum x^{2}+(1-x)^{2}$
$x^{2}+(1-x)^{2}$ attains maximum value 1 for $x=0,1$

For $x^{2}+(1-x)^{2}$ minimum value $1 / 2$ for $x=1 / 2$ $.2 \leq a^{2}+b^{2}+c^{2}+d^{2} \leq 4$
5. 1 ;

The parametric equation of a line
passing through A is
$\frac{x+5}{\cos \theta}=\frac{\mathrm{y}+4}{\sin \theta}=\mathrm{r}$
let $\mathrm{AB}=\mathrm{r}_{1}, \mathrm{AC}=\mathrm{r}_{2}, \mathrm{AD}=\mathrm{r}_{3}$
$B\left(-5+r_{1} \cos \theta,-4+r_{1} \sin \theta\right)$,
$\mathrm{C}\left(-5+\mathrm{r}_{2} \cos \theta,-4+\mathrm{r}_{2} \sin \theta\right)$,
$\mathrm{D}\left(-5+\mathrm{r}_{3} \cos \theta,-4+\mathrm{r}_{3} \sin \theta\right)$
Sub in given lines.
We get $\frac{15}{r_{1}}=\cos \theta+3 \sin \theta$
6. 1 ;

The required mean
$X=\frac{1 .{ }^{n} C_{1}+2 .{ }^{n} C_{2}+3 .{ }^{n} C_{3}+\ldots+n .{ }^{n} C_{n}}{{ }^{n} C_{1}+{ }^{n} C_{2}+\ldots .+{ }^{n} C_{n}}$ $=\frac{\sum_{r=0}^{n} r{ }^{n} C_{r}}{\sum_{r=1}^{n} C_{r}^{n}}=\frac{\sum_{r=1}^{n} r ._{r}^{n}{ }^{n}{ }^{n}{ }^{n-1} C_{r-1}}{\sum_{r=1}^{n} C_{r}}=\frac{\sum_{r=1}^{n} \sum_{n-1}^{n-1} C_{r-1}}{\sum_{r=1}^{n} C_{r}}$
$=\frac{\mathrm{n}\left(2^{\mathrm{n}-1}\right)}{\left(2^{\mathrm{n}}-1\right)}$
7. 1 ;

Distance $=\frac{\overline{\mathrm{a}} \cdot \overline{\mathrm{n}}-\overline{\mathrm{d}}}{|\mathrm{n}|}$
$=\frac{(2 i+2 j+3 k) \cdot(i+5 j+k)-5}{\sqrt{1^{2}+5^{2}+1^{2}}}=\frac{10}{3 \sqrt{3}}$
8. 3 ;
$-x^{2} y^{2} \cdot \frac{x \mathrm{dy}-\mathrm{yd} x}{x^{2}}+x(\mathrm{yd} x+x \mathrm{dy})=0$
$\frac{-\mathrm{y}}{x} \mathrm{~d}\left(\frac{\mathrm{y}}{x}\right)+\frac{\mathrm{d} x \mathrm{y}}{x^{2} \mathrm{y}^{2}}=0$
On integration $-\frac{\left(\frac{y}{x}\right)^{2}}{2}-\frac{1}{x y}=c$
passes through $(1,2) \Rightarrow \mathrm{c}=\frac{-5}{3}$
$y^{3}+2 x-5 x^{2} y=0$
9. 2 ;
$a=1+10+10^{2}+\ldots .+10^{54}$
$\frac{10^{55}-1}{10-1}=\frac{10^{55}-1}{10^{5}-1} \cdot \frac{10^{5}-1}{10-1}=\mathrm{bc}$
10. 1;
$\left.\mathrm{y}=9 x^{2} \quad\right\} 4 x^{2}-4=0$
$\mathrm{y}=5 x^{2}+4 \int \Delta=64$
Area $=\frac{\Delta^{3 / 2}}{6 \mathrm{a}^{2}}=\frac{8 \times 8 \times 8}{6 \times 4 \times 4}=\frac{16}{3}$
11. 2 ;

Since, C cannot be the empty set, Hence ${ }_{0} 1$
$-1=\left|\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right| \in \mathrm{C}$
We also have
$\left|\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|=2$
$\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right|=$
So $A \neq B \cup C$. In general, the determinant
$\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
$\Delta=\mathrm{a}_{11} \mathrm{a}_{22} \mathrm{a}_{33}+\mathrm{a}_{12} \mathrm{a}_{23} \mathrm{a}_{31}+$
$a_{13} a_{21} a_{32}-a_{11} a_{23} a_{32}-$
$a_{12} a_{21} a_{33}-a_{13} a_{31} a_{22}$
With the a's being 0 or 1 , equals 1 only if $a_{11} a_{22} a_{33}=1$ and the remaining terms are zero; if $\mathrm{a}_{12} \mathrm{a}_{23} \mathrm{a}_{31}=1$ and the remaining terms are zero; or if $\mathrm{a}_{13} \mathrm{a}_{21} \mathrm{a}_{32}=1$ and the remaining terms are zero. Since there are three similar
relations for determinants that equal -1 , we must have $N(B)=$ n (C)
12. 3 ;
$x(200-x)>\frac{3}{4} \times 100 \times 100 \Rightarrow 50<x<150$
$\Rightarrow \mathrm{P}(\mathrm{E})=\frac{50}{100}=\frac{1}{2}$
13. 1 ;
$\mathrm{I}=\int \frac{\left(2 x^{2}+1\right)}{\left(x^{2}-4\right)\left(x^{2}-1\right)} \mathrm{d} x$
$\frac{2 x^{2}+1}{\left(x^{2}-4\right)\left(x^{2}-1\right)}=\frac{3}{\left(x^{2}-4\right)}-\frac{1}{x^{2}-1}$
$\therefore \mathrm{I}=\int\left[\frac{3}{\left(x^{2}-4\right)}-\frac{1}{x^{2}-1}\right] \mathrm{d} x$
$=\frac{3}{2 \times 2} \log \left|\frac{x-2}{x+2}\right|-\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+\mathrm{c}$
$=\frac{3}{4} \log \left|\frac{x-2}{x+2}\right|+\log \left|\frac{x+1}{x-1}\right|^{1 / 2}+c$
$=\log \left|\frac{x-2}{x+2}\right|^{3 / 4}+\log \left|\frac{x+1}{x-1}\right|^{1 / 2}+c$
$=\log \left[\left(\frac{x+1}{x-1}\right)^{1 / 2}\left(\frac{x-2}{x+2}\right)^{3 / 4}\right]+\mathrm{c}$
14. 4; Observe that
$\sin x+\sin 3 x+\sin 5 x+.$.
$+\sin 17 x=\frac{\sin ^{2} 9 x}{\sin x}$
$\therefore \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} 9 x}{\sin x} \mathrm{~d} x=-\left(\cos x+\frac{\cos 3 x}{3}+\right.$

$$
\frac{\cos 5 x}{5}+\ldots+\frac{\cos 17 x}{17} \int_{0}^{\frac{\pi}{2}}
$$

15. 4;

Since, ' f ' is continuous,
differentiable
Lt $x^{\alpha} \log x=\mathrm{f}(0)$
[f is continuous]
$\underset{x \rightarrow 0}{\mathrm{Lt}} \frac{\log x}{x^{-\alpha}}=0$
$\operatorname{Lt}_{x \rightarrow 0} \frac{1 / x}{-\alpha \cdot x^{-\alpha-1}}=0$
$\operatorname{Lt}_{x \rightarrow 0} \frac{-1}{\alpha} \cdot \frac{1}{x^{-\alpha}}=0$
$\Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{-1}{\alpha} \cdot x^{\alpha}=0$
$\Rightarrow \alpha=1 / 2$
16. 4;

Put $\sqrt{4 x+1}=\mathrm{y}$ and expand, then
highest power is y^{6}
17. 2;
$\mathrm{S}=x^{2}+\mathrm{y}^{2}-\frac{3}{2} x+2 \mathrm{y}$
$\mathrm{PA}=\sqrt{\mathrm{S}_{11}}=2$
18. 2 ;

The two parabolas are
$\mathrm{y}^{2}=x$ and $\mathrm{y}^{2}=-x$
The point ($k,-1$) is an exterior point.
if $(-1)^{2}-\mathrm{k}>0$ and
$(-1)^{2}+\mathrm{k}>0$
Hence Range of
K is $(-1,1)$

