How many litres of water should be added...

N. Vinaykumar Reddy

Director, IACE, Hyderabad.

MODEL QUESTIONS

Directions (Q.No..1-5): What will come in place of the question mark (?) in the following number series?

1. $174,169,162,152,138$, ?
$\begin{array}{lll}\text { 1) } 119 & \text { 2) } 121 & \text { 3) } 111\end{array}$
4) $100 \quad$ 5) 108
2. $193,97,49,25, ?, 7$
$\begin{array}{lll}\text { 1) } 15 & \text { 2) } 12 & \text { 3) } 17\end{array}$
4) 13 5) 11
3. $17,24,13,26,9$, ?
$\begin{array}{lll}\text { 1) } 30 & \text { 2) } 32 & \text { 3) } 29\end{array}$
4) $28 \quad$ 5) 26
4. $462,462,456,432, ?, 282$
$\begin{array}{lll}\text { 1) } 362 & \text { 2) } 378 & \text { 3) } 364\end{array}$
4) 396 5) 346
5. $1,3,10,48, ?, 6432$
$\begin{array}{lll}\text { 1) } 208 & \text { 2) } 380 & \text { 3) } 400\end{array}$
4) $360 \quad$ 5) 440

Directions (Q.No.6-10): In each of these questions, two equations I and II are given. You have to solve both the equations and give answer

1) if $x>y$
2) if $x \geq y$
3) if $x<y \quad$ 4) if $x \leq y$
4) if $x=y$ or no relation can be
established between x and y
6. I. $x^{2}-264=361$
II. $\mathrm{y}^{3}-878=453$
7. I. $3 x^{2}+14 x+15=0$
II. $3 y^{2}-13 y+14=0$
8. I. $12 x^{2}-17 x+6=0$ II. $y^{2}-16 y+63=0$
I. $x^{2}-48 x+575=0$ II. $46 y^{2}-35 y-11=0$
9. I. $15 x^{2}-11 x-12=0$ II. $20 \mathrm{y}^{2}-49 \mathrm{y}+30=0$
10. In 30 litres of milk and water, water is only 20%. How many litres of water should be added to it to increase the percentage of water to 60% ?
1) 24 litres 2) 6 litres
2) 20 litres 4) 30 litres
3) None of these
12. Three pipes A, B and C working together can fill a cistern in 11 hours. After working at it together for 3 hours, B is closed, and A and C filled it in 16 more Hours. B alone can fill the cistern in $\begin{array}{ll}\text { 1) } 22 \text { hours } & 20 \text { hours }\end{array}$ 3) 16 hours 4) 32 hours 5) None of these
13. A train can travel 50% faster than a car. Both start from point A at the same time and reach point B, which is 330 km away from A , at the same time. One the way, however, the train lost about 88 minutes while stopping at the

station. The speed of the train is $\begin{array}{ll}\text { 1) } 75 \mathrm{~km} / \mathrm{hr} & \text { 2) } 100 \mathrm{~km} / \mathrm{hr}\end{array}$ 3) $112.5 \mathrm{~km} / \mathrm{hr} 4) 125 \mathrm{~km} / \mathrm{hr}$ 5) None of these
14. A mixture contains wine and water in the ratio of $3: 2$ and another mixture contains them in the ratio of $4: 5$. How many litres of the latter must be mixed with 3 litres of the former so that the resultant mixture may contain equal quantities of wine and water?
1) 4 litres
2) $\frac{2}{5}$ liters
3) $3 \frac{3}{4}$ liters
4) $4 \frac{1}{2}$ liters
5) none of these
15. A hemispherical bowl of internal diameter 54 cm contains a liquid. This liquid is to be filled in cylindrical bottles of radius 3 cm
and height 9 cm . How many bottles are required to empty the bowl?
1) 221
2) 343
3) 81
4) 243
5) None of these

Directions (Q.No.16-20): Study the following pie chart and answer the given questions. Given below is the pie chart which shows the percentage
distribution of number of article sold by 5 shopkeepers A, B, C, D and E in a year 2005 Total article sold $=1200$

16. What is the ratio of number of articles sold by shopkeeper C and E together to the 125% of number of articles sold by A and D together

1) $\frac{40}{27}$
2) $\frac{125}{81}$
3) $\frac{113}{100}$
4) $\frac{87}{81}$
5) $\frac{117}{100}$
17. If in year 2004 number of articles sold by C and E are equal and ratio of articles sold by C \& E together in 2004 to 2005 is 13 : 12.Then find the percentage increase or decrease in articles sold by E from 2004 to 2005 (approx)
1) 20%
2) 15%
3) 13%
4) 18%
5) 22%
18. If articles sold by A in 2006 is increased by 40% as compared to previous year and articles sold by D in 2006 increases by 75% from previous year, then what is the average of articles sold by A \& D together in 2006
1) 240
2) 252
3) 196
4) 225
5) 185
19. What is the central angle for the number of articles sold by A and D together?

1) 86.5	2) 78.4
3) 97.2	4) 88.25
5) 90	

5) 90
20. What is the difference in Average of articles sold by A and C together and B and D together?
1) 12
2) 8
3) 6
4) 7
5) 13

KEY \& SOLUTIONS

1. 1;Difference in Series $5,7,10,14$, 19
So, $(138-19)=119$
2. 4; $-96,-48,-24,-12,-6$ So, 25-12=13
3. $\mathbf{4}$;Series $+7,-11,+13,-17,+19$
4. 2; $0 \quad 6 \quad 24 \quad 54 \quad 96$ $\begin{array}{lllll}6 & 18 & 30 & 42 & 54\end{array}$ So, 432-54 = 378
5. 3; Series $\times 1+2, \times 2+4, \times 4+8$, $\times 8+16, \times 16+32$ So, $48 \times 8+16=400$
6. 5; I. $x^{2}-264=361$
or, $x^{2}=361+264$
$\therefore \mathrm{x}^{2}=625$
$\therefore \mathrm{x}=\sqrt{625}= \pm 25$
II. $\mathrm{y}^{3}-878=453$
or, $\mathrm{y}^{3}=453+878$
$\mathrm{y}^{3}=1331$
$\therefore \mathrm{y}=\sqrt[3]{1331}=11$
Hence no relation can be established
7, 3; I. $3 x^{2}+14 x+15=0$ or, $3 x^{2}+9 x+5 x+15=0$ or, $3 x(x+3)+5(x+3)=0$
or, $(3 x+5)(x+3)=0$
$\therefore \mathrm{x}=-5 / 3,-3$
II. $3 y^{2}-13 y+14=0$
or, $3 y^{2}-6 y-7 y+14=0$
or, $3 \mathrm{y}(\mathrm{y}-2)-7(\mathrm{y}-2)=0$
or, $(3 y-7)(y-2)=0$
$\therefore y=7 / 3,2$
Hence $\mathrm{x}<\mathrm{y}$
7. 3; I. $12 x^{2}-17 x+6=0$
or, $12 \mathrm{x}^{2}-9 \mathrm{x}-8 \mathrm{x}+6=0$
or, $3 x(4 x-3)-2(4 x-3)=0$ or, $(3 \mathrm{x}-2)(4 \mathrm{x}-3)=0$
$\therefore x=2 / 3,3 / 4$
II. $y^{2}-16 y+63=0$
or, $y^{2}-9 y-7 y+63=0$
or, $\mathrm{y}(\mathrm{y}-9)-7(\mathrm{y}-9)=0$ or, $(\mathrm{y}-7)(\mathrm{y}-9)=0$
$\therefore \mathrm{y}=7,9$

Hence x < y

9. 1; I. $x^{2}-48 x+575=0$ or, $x^{2}-23 x-25 x+575=0$ or, $\mathrm{x}(\mathrm{x}-23)-25(\mathrm{x}-23)=0$ or, $(x-25)(x-23)=0$
$\therefore \mathrm{x}=25,23$
II. $46 y^{2}-35 y-11=0$
or, $46 y^{2}-46 y+11 y-11=0$ or, $46 \mathrm{y}(\mathrm{y}-1)+11(\mathrm{y}-1)=0$ or, $(46 y+11)(y-1)=0$ $\therefore y=-11 / 46,1$
Hence $\mathrm{x}>\mathrm{y}$
10. 5; I. $15 x^{2}-11 x-12=0$ or, $15 \mathrm{x}^{2}-20 \mathrm{x}+9 \mathrm{x}-12=0$ or, $5 \mathrm{x}(3 \mathrm{x}-4)+3(3 \mathrm{x}-4)=0$ or, $(5 x+3)(3 x-4)$
$\therefore \mathrm{x}=-3 / 5,4 / 3$
II. $20 \mathrm{y}^{2}-49 \mathrm{y}+30=0$
or, $20 \mathrm{y}^{2}-25 \mathrm{y}-24 \mathrm{y}+30=0$ or, $5 \mathrm{y}(3 \mathrm{y}-5)-6(4 \mathrm{y}-5)$ $\therefore \mathrm{y}=6 / 5,5 / 4$
No relation
11. 4;Let x litres of water be added Then, $(x+6) /(30+x)=3 / 5$ or, $5(x+6)=3(30+x)$ or, $5 \mathrm{x}+30=90+3 \mathrm{x}$ or, $5 \mathrm{x}-3 \mathrm{x}=90-30$
or, $2 \mathrm{x}=60$
$\therefore x=60 / 2=30$ litres
12. 1; Part filled by A, B and C together in 3 hours $=3 / 11$
Remaining $8 / 11$ part is filled by
A and C together
in 16 hours NOW, work done
by A, B and C in 8 hours is
equal to the work done by A
and C .
Let their efficiency are A, B, C
$8(\mathrm{~A}+\mathrm{B}+\mathrm{C})=16(\mathrm{~A}+\mathrm{C})$
$\mathrm{B}=\mathrm{A}+\mathrm{C}$
efficiency of B is equal to the efficiencyof A and C
Then B alone can do work in 22 hours
13. 3; Let the speed of the car be x $\mathrm{km} / \mathrm{hr}$
Then the speed of the train
$=\mathrm{x} \times \frac{150}{100}=\frac{3 \mathrm{x}}{2}$
now, $\frac{330}{\mathrm{x}}-\frac{330}{\frac{3 \mathrm{x}}{2}}=\frac{88}{60}$
$=\frac{330}{\mathrm{x}}-\frac{220}{\mathrm{x}}=\frac{88}{60}$
$\frac{330-220}{x}=\frac{88}{60}$
$\frac{110}{x}=\frac{88}{60} \Rightarrow x=\frac{60 \times 110}{88}=75$
Therefore the speed of the car $=$ $75 \mathrm{~km} / \mathrm{hr}$
\therefore speed of the train
$\frac{3 \mathrm{x}}{2}=\frac{3 \times 75}{2}=112.5 \mathrm{~km} / \mathrm{h}$
14. 5;
$\begin{array}{lc}\text { Wine Water } \\ \text { First Mixture } & 3 x \quad 2 x\end{array}$
Second mixture $4 y \quad 5 y$
In 3 litres of first mixture:
Wine $=1.8 l$
Water $=1.2 l$
When $9 y$ of second mixture is
added
$1.8 l+4 \mathrm{y}=1.2 l+5 \mathrm{y}$
or, $\mathrm{y}=0.6 l$
\therefore Resultant mixture $=9 \mathrm{y}$
$=9 \times 0.6=5.4$ litres
15. 5;

Volume of Hemispherical bowl
$=\frac{2}{3} \pi \mathrm{r}^{3}$
\because Diameter $=54 \mathrm{~cm}$
\therefore Radius $=\frac{54}{2}=27 \mathrm{~cm}$
Now,Volume of hemispherical
bowl $=\frac{2}{3} \times \frac{22}{7} \times 27 \times 27 \times 27$
Volume of the cylindrical bottle
$=\pi \mathrm{r}^{2} \mathrm{~h}=\frac{22}{7} \times 3 \times 3 \times 9$
\therefore Number of bottles required
$=\frac{2}{3} \times \frac{22}{7} \times \frac{27 \times 27 \times 27 \times 7}{22 \times 3 \times 3 \times 9}=162$
16. 1; Articles sold by C \& E
together $=50 / 100 \times 1200=600$
125% of articles sold by A \& D together
$=\frac{27 \times 1200}{100} \times \frac{125}{100}$
Required ratio
$=\frac{600}{405}=\frac{40}{27}$
17. 4; Number articles sold by C and E together in 2004
$=\frac{(32+18) \times 1200}{100 \times 12} \times 13=650$
Required \%
$=\frac{(32 \times 12)-\frac{650}{2}}{650}=\frac{384-325}{325} \times 100$
$=18.15 \approx 18 \%$
18. 2; Articles sold by A in 2006
$=15 \times 12 \times 140 / 100$
$=18 \times 14$
$=252$
Articles sold by D in 2006
$=144 \times 1.75$
$=252$
Average of articles sold by A
and D together in
$2006=252$
19. 3;Required central angle
$=\frac{18}{5}=\frac{x}{15+12}$
$x=97.2$
20. 1; Average of articles sold by A and C together
$=(15+18) \times \frac{12}{2}=33 \times 6=198$
Average of articles sold by B and D together
$=(23+12) \times \frac{22}{2}=35 \times 6=210$
Required difference $=12$

