Find the volume of sphere of radius is...

1. Explain why $(3 \times 5 \times 7+7)$ and $(11 \times 13 \times 17+17)$ are composite numbers?
A. i) $(3 \times 5 \times 7+7)$ is a composite number because $7(3 \times 5 \times 1+1) 1$ has more than two factors.
ii) $(11 \times 13 \times 17+17)=17(11 \times$ $13+1) 1$
more than two factors
$\therefore 11 \times 13 \times 17+17$ is composite number
2. The larger of two supplementary angles exceeds the smaller by 18°. Write equations of above information.
A. Let pair of supplementary angles x and y
Then we have $x+y=180^{\circ}$-(1) By problem $x=\mathrm{y}+18^{\circ} \Rightarrow x-\mathrm{y}=$ 18°-(2)
3. Find the roots of $x^{2}-3 x-10=0$.
A. Given Quadratic equation is
$x^{2}-3 x-10=0$.
$x^{2}-5 x-2 x-10=0 \quad-10 x^{2}$ $x(x-5)+2(x-5)=0$ $(x-5)(x+2)=0$
 $x=5,-2$
\therefore roots of the given quadratic equation is $(5,-2)$
4. If $2,4,6,8, \ldots$ are in A.P. Find the 10th term?
A. Given $\mathrm{AP}=2,4,6,8, \ldots$., Here a $=2$
$\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=4-2=2$
$10^{\text {th }}$ term $=\mathrm{t}_{10}=\mathrm{a}+9 \mathrm{~d}$
$2+18=20$
5. Find the volume of sphere of radius is 7 cm .
A. Volume of the sphere $=\frac{4}{3} \pi r^{3}$

Given that $\mathrm{r}=7 \mathrm{~cm}$
$\mathrm{v}=\frac{4}{3} \times \frac{22}{7} 7 \times 7 \times 7$
$=\frac{88 \times 49}{3}=\frac{4312}{3}$
$=1437.3$ cubic cm
\therefore Volume of the sphere $=1437.3$ cm^{3}
6. Write the formula of curved surface area of cone and explain each term.
A. Curved surface area of cone $=\pi r l$

Where $r=$ radius of cone $l=$ slant height of the cone.
7. If $x, x+2, x+6$ are three consecutive terms in G.P. Then find x ?
A. Given $x, x+2, x+6$ are in G.P. If t_{1}, t_{2}, t_{3} are consecutive terms of G.P.

Then $\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}} \quad \therefore \frac{x+2}{x}=\frac{x+6}{x+2}$ $(x+2)^{2}=x(x+6)$
$\Rightarrow x^{2}+4+4 x=x^{2}+6 x$
$\Rightarrow 4+4 x=6 x$
$\Rightarrow 4=6 x-4 x$
$\Rightarrow x=2$
8. A - B, B-A represent on Venn
diagram.

A

冒 $=A-B$

2 MARKS QUESTIONS

1. Find the quadratic polynomial the sum and product of whose zeroes are -3 , and 2 .
A. Given that sum of zeroes $=(\alpha+$ $\beta)=-3$ and
Product of zeroes $=\alpha \beta=2$
We know that if α, β are zeroes of Q.P. Then $\mathrm{P}(x)=\mathrm{K}\left[x^{2}-x(\alpha+\right.$ $\beta)+\alpha \beta]$
$\therefore \mathrm{P}(x)=\mathrm{K}\left[x^{2}-x(-3)+2\right]$
$=\mathrm{K}\left[x^{2}+3 x+2\right]$
If $\mathrm{K}=1$ then the required
$\mathrm{P}(x)=x^{2}+3 x+2$
2. Write the all subsets of $A=\{1,2$, $3,4\}$
A. Given set $\mathrm{A}=\{1,2,3,4\}$

Subsets $=\{1\},\{2\},\{3\},\{4\},\{1$, $2\},\{1,3\},\{1,4\},\{1,2,3\},\{1,3$, $4\},\{2,3,4\},\{2,3\},\{2,4\},\{3$, $4\},\{1,2,4\},\{1,2,3,4\}$ \{ \}.
\therefore No. of subsets of $\{1,2,3,4\}$ $=2^{4}=16$
3. If $x^{2}+y^{2}=25 x y$ then prove that $2 \log$
$(x+y)=3 \log 3+\log x+\log y$.
A. Given that $x^{2}+y^{2}=25 x y$ add $2 x y$ on both sides
$x^{2}+y^{2}+2 x y=25 x y+2 x y$
L.H.S. is the form of $(a+b)^{2}=a^{2}$ $+\mathrm{b}^{2}+2 \mathrm{ab}$
$\therefore(x+y)^{2}=27 x y$
Apply logarithms on both sides $\log (x+y)^{2}=\log 27 x y$
$\left[\because(i) \log a^{\mathrm{m}}=\mathrm{m} \log a\right.$
(ii) $\log a b c=\log a+\log b+\log c]$
$2 \log (x+y)=\log 27+\log x+$ logy.
$2 \log x+y=3 \log 3+\log x+$
logy.
4. Find the value of k for which the pair of equations $2 x-\mathrm{ky}+3=0$, $4 x+6 y-5=0$ represent parallel lines.
A. Given pair of linear equations are $2 x-\mathrm{ky}+3=0$,
$4 x+6 y-5=0$ are parallel lines If pair of linear equations are parallel then they are in consistent
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow \frac{2}{4}=\frac{-k}{6} \neq \frac{3}{-5}$

i) $l \& m$ line are__
ii) These line represents linear system. How many solutions are there.
iii) In linear system these lines are
A. i) $\mathrm{L} \& \mathrm{~m}$ lines are intersecting lines
ii) Unique solutions
iii) These lines are consistent
8. A heap of rice is in the form of a cone of diameter 12 m and height 8 m . Find its volume? How much canvas cloth is required to cover the heap?
A. Diameter of the heap (conical) $\mathrm{d}=12 \mathrm{~m}, \mathrm{r}=6 \mathrm{~m}$
Height of the cone (h) $=8 \mathrm{~m}$
Volume of the cone $V=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 6^{2} \times 8$
$=\frac{44 \times 48}{7}=\frac{2112}{7}=301.7 \mathrm{~m}^{3}$
To cover the canvas cloth we will find the curved surface area of cone.
CSA of cone $=\pi r l$
$l=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}=\sqrt{8^{2}+6^{2}}$
$\sqrt{64+36}=\sqrt{100}=10=l$
$=\frac{22}{7} \times 6 \times 10=\frac{132 \times 10}{7}$
$=\frac{1320}{7}=188.5 \mathrm{sq} . \mathrm{m}$
$\therefore 188.5$ sq.m. canvas cloth required.

4 MARKS QUESTIONS

1. A toy is in the form of a cone mounted on a hemisphere of diameter 7 cm the total length of the toy is 14.5 cm find the volume of a toy.
A. Given that diameter of the cone $=$ 7 cm

$\mathrm{r}=3.5 \mathrm{~cm}$

Total height of the toy is 14.5 cm height of the conical part $=11 \mathrm{~cm}$

\therefore volume of the cone $=\frac{1}{3} \pi r^{2} h$ $=\frac{1}{3} \times \frac{22}{7}=3.5 \times 3.5 \times 11$
$=\frac{11 \times 35 \times 11}{3}=\frac{423.5}{3}=141.1 \mathrm{~cm}^{3}$
Volume of the hemisphere
$=\frac{2}{3} \pi r^{3}=\frac{2}{3} \times \frac{22}{7} \times 3.5 \times 3.5 \times 3.5$
$=\frac{22 \times 3.5 \times 3.5}{3}$
$=\frac{269.5}{3}=89.8 \mathrm{~cm}^{2}$
\therefore Total volume of the toy $=$ volume of conical part + volume of hemispherical part $=141.1+$ $89.8=230.9 \mathrm{~cm}^{3}$
\therefore Volume of the toy
$=230.9 \mathrm{~cm}^{3}$ (or) $231 \mathrm{~cm}^{3}$
2. A sum of Rs. 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each price Rs. 20 less than its preceding prize. Find the volume of cash prize.
A. Given that sum of all cash prizes = Rs. 700
Each price differs by Rs. 20.
Let the prizes (in ascending order) be
$x, x+20, x+40, x+60, x+80, x+$ $100, x+120$
Sum of prizes $=s_{7}=\frac{n}{2}[a+l]$
$=700=\frac{7}{2}[x+x+120]$
$\Rightarrow 700 \times \frac{2}{7}=(2 x+120)$
$\Rightarrow 200-120=2 x$
$\Rightarrow 80=2 x$
$\therefore x=40$
\therefore The required prizes are 40,60 , $80,100,120,140,160$
$1^{\text {st }}$ prize to last prize cost $=160$, 140, 120, 100, 80, 60, 40.
\therefore sides of the cube $=4$
When two cubes are added the length of cuboid $=8 \mathrm{~cm}$
breadth $=4 \mathrm{~cm}$, height $=4 \mathrm{~cm}$.
T.S.A. of cuboid $=2(\mathrm{lb}+\mathrm{bh}+l \mathrm{~h})$
$=2(8 \times 4+4 \times 4+8 \times 4)$
$=2(32+16+32)$
$=160 \mathrm{~cm}^{2}$
\therefore T.S.A of cuboid is $160 \mathrm{~cm}^{2}$
7. Read the following picture and answer the questions.

AP \& TS 10th Class - EM \& TM
 సృక్ష

SAKSHI EDUCATION

- Study Material
- Model papers
- Previous Papers

Visit: www.sakshicducation.com

