Send your Feedback to vidya@sakshi.com

F = 20N

The difference between the accelerations of ...

MODEL QUESTIONS

Subject expert

Dr. RK's Classes

ನಾತ್ರಿ ವಿರ್ಯ

- **1.** The force of interaction between two atoms is given by F $\alpha\beta\exp\left(-\frac{x^2}{\alpha kt}\right)$; where x is the distance, k is the Boltzmann constant and T is temperature and α and β are two constants. The dimension of β is : 1) $M^2L^2T^{-2}$ 2) $M^{2}LT^{-4}$ 3) $M^0L^2T^{-4}$ 4) MLT⁻²
- 2. A particle is moving with speed $v=b\sqrt{x}$ along positive x-axis. Calculate the speed of the particle at time $t = \tau$ (assume that the particle is at origin at t = 0)

1)
$$\frac{b^2 \tau}{4}$$
 2) $\frac{b^2 \tau}{2}$
3) $b^2 \tau$ 4) $\frac{b^2 \tau}{\sqrt{2}}$

3. A block of mass 5 kg is (i) pushed in case (A) and (ii) pulled in case (B), by a force F = 20 N, block, in case (B) and case (A) will be : $(g = 10 \text{ ms}^{-2})$

F = 20N(B) (A) 2) 0.8 ms⁻² 1) 0 ms⁻² 3) 0.4 ms^{-2} 4) 3.2 ms^{-2}

4. A ball is thrown upward with an initial velocity V₀ from the surface of the earth. The motion of the ball is affected by a drag force equal to $m\gamma v^2$ (where m is mass of the ball, v is its Instantneous velocity and γ is a constant). Time taken by the ball to rise to its zenith is:

)
$$\frac{1}{\sqrt{\gamma g}} \sin^{-1} \left(\sqrt{\frac{\gamma}{g}} V_0 \right)$$

2)
$$\frac{1}{\sqrt{\gamma g}} \tan^{-1} \left(\sqrt{\frac{\gamma}{g}} V_0 \right)$$

3) $\frac{1}{\sqrt{2\gamma g}} \tan^{-1} \left(\sqrt{\frac{2\gamma}{g}} V_0 \right)$

$$\frac{1}{\sqrt{\gamma g}} \ln \left(1 + \sqrt{\frac{\gamma}{g}} V_0 \right)$$

4)

assuming that his centre of mass moves by a distance $l(l \ll L)$, is close to : 2) $Mgl(1+\theta_0^2)$ 1) Mg*l*

3)
$$Mgl(1-\theta_0^2)$$
 4) $Mgl\left(1+\frac{\theta_0^2}{2}\right)$

6. An L-shaped object, made of thin rods of uniform mass density, is suspended with a string as shown in figure. If AB = BC, and the angle made by AB with downward vertical is θ , then

3) $\tan \theta = \frac{1}{2}$ 4) $\tan \theta = \frac{1}{2/3}$ 7. A particle of mass m is moving along a trajectory given by $x = x_0 + a \cos \omega_1 t$ $y = y_0 + b \sin \omega_2 t$ The torque, acing on the particle about the origin, at t = 0 is: 1) $m(-x_0b + y_0a)\omega_1^2\hat{k}$ 2) $+my_0a\omega_1^2\hat{k}$ radius 'a' is surrounded by a

3)
$$-m(x_0b\omega_2^2 - y_0a\omega_1^2)\hat{k}$$

4) zero

8. A solid sphere of mass 'M' and uniform concentric spherical shell of thickness 2a and mass 2M. The gravitational field at distance '3a' from the centre will be:

1)
$$\frac{2GM}{9a^2}$$
 2) $\frac{GM}{9a^2}$
3) $\frac{GM}{3a^2}$ 4) $\frac{2GM}{3a^2}$

9. A bottle has an opening of radius a and length b. A cork of length b and radius $(a + \Delta a)$ where $(\Delta a \ll$ a) is compressed to fit into the

- making an angle of 30° with the horizontal, as shown in the figures. The coefficient of friction between the block and floor is = 0.2. The difference between the accelerations of the
- 5. A person of mass M is, sitting on a swing of length L and swinging with an angular amplitude θ_0 . If the person stands up when the swing passes through its lowest point, the work done by him,

opening completely (see figure). If the bulk modulus of cork is B and frictional coefficient between the bottle and cork is p then the force needed to push the cork into the bottle is :

2)
$$x = r \left(\frac{H}{H+h} \right)$$

3) $x = r \left(\frac{H}{H+h} \right)^2$
4) $x = r \left(\frac{H}{H+h} \right)^{1/2}$

We use Gauss's Law for Mass of the liquid entering per second at A = mass of the liquid a_1 and a_2 be the area of cross