What is the time in a mirror?

REFLECTION OF LIGHT BY DIFFERNT SURFACES

EAMCET ORIENTED BITS

1. A plane mirror produces a magnification of

[GUJCET]()

(A) -1

(B) +1

(C) zero

(D) infinite

2. An object moving at a speed of 5m/sec towards a concave mirror of focal length f = lm at a distance of 9m. The average speed of the image is [ANU]()

(A) $\frac{1}{5}$ m/s

(B) $\frac{1}{10}$ m/s

(C) $\frac{5}{9}$ m/s (D) $\frac{4}{10}$ m/s

3. An object is placed at a distance 20cm from the pole of a convex mirror of focal length 20cm. The image is produced at [BITSAT](

(A) 13.3cm

(B) 20cm

- (C) 25cm
- (D) 10cm
- Which mirror is to be used to obtain a parallel beam of light from small lamp [GUJCET](

(A) plane mirror (B) convex mirror

- (C) concave mirror (D) any one of these
- A ray of light is incident on a plane mirror at an angle of 60°. The angle of deviation produced by the mirroris [KCET](

(A) 120°

(B) 30°

(C) 60°

- (D) 90°
- The radius of curvature of concave mirror is 24cm and the image is magnified by 1.5 times the object [WBJEE]() distance is

(A) 20 cm

(B) 8cm

- (C) 16 cm
- (D) 24 cm
- 7. To get three images of a single object one should have two plane mirrors at an angle of

[AIEEE](

(A) 60°

(B) 90°

(C) 120°

(D) 30°

8. The focal length (f) of a spherical mirror of radius of curvature 'R' is [Kerala CEE] ()

(A) $\frac{R}{2}$

(B) R

(C) $\left(\frac{3}{2}\right)R$

(D) 2R

9. A man having height 6m observes image of 2m height erect. The mirror used is [AIEEE](

(A) concave

(B) convex

(C) plane

(D) none

10. If two mirrors are kept at 60° to each other then the number of images formed by them is [KCET](

(A) 5

(B) 6

(C) 7

(D) 8

11. Two plane mirrors are perpendicular to each other A ray after suffering reflection from the two mirrors will be [AIEEE](

(A) perpendicular to the original ray

(B) parallel to the original ray

(C) parallel to the first mirror

(D) at 45° to the original ray

12. A double convex lens $(R_1 = R_2 = 100 \text{ cm})$ having focal length equal to the focal length of a concave mirror. The radius of the concave [IIIT] () mirror is

(A) 10cm

(B) 20cm

(C) 40cm

(D) 15cm

13. What will be the height of the image when an object of 2mm is placed at a distance 20cm in front of the axis of a convex mirror of radius of curvature 40cm? [AIEEE]()

(A) 20mm

(B) 10mm

(C) 6mm

(D) Imm

14. The magnification of the image when an object is placed at a distance 'x' from the principal focus of a mirror of focal length f is [JEE]()

(C) $\frac{f}{x}$

(D) $1 - \frac{f}{x}$

10th Class Special

15. For a real object which of the following can produce a real image? [AIEEE](

(A) plane mirror

(C) convex mirror

(B) concave lenses

(D) concave mirror

16. Two plane mirrors are inclined to each other at an angle 72°. What is the number of images formed (JEE)()

(A) 3

(B) 5

front of a concave mirror of focal length 20cm.

(D) 7 (C) 9 17. An object is placed at a distance of 40 cm in

The nature of image is [JEE](

- (A) real and inverted and of same size (B) virtual erect and of same size
- (C) real erect and of same size
- (D) virtual inverted and of same size
- 18. A person sees his virtual image by holding a mirror very close to the face. When he moves the minor away from his face the image becomes inverted. What type of mirror he is using?

[AIEEE](

(A) plane mirror

(B) convex mirror

(C) concave mirror (D) all the above

19. The time in a clock is 8:35. Then what is the [KCET](time in a mirror?

(A) 3:25

(B) 4:25

(C) 5:25

17.A

(D) 6:25

20. In a concave mirror the image is magnified. This [JEE]() is due to

(A) converged rays (B) diverged rays

(C) inverted rays (D) erected rays

EAMCET ORIENTED BITS:

3. C 1.B 2.A 5. C 7.B 8.A 6.A 10. B 12. B 9. B 11.B 14. C 13. D 15. D 16. B

19.A

20. A

18.A

REFRACTION OF LIGHT AT **CURVED SURFACES**

I. Reflection on Concepts:

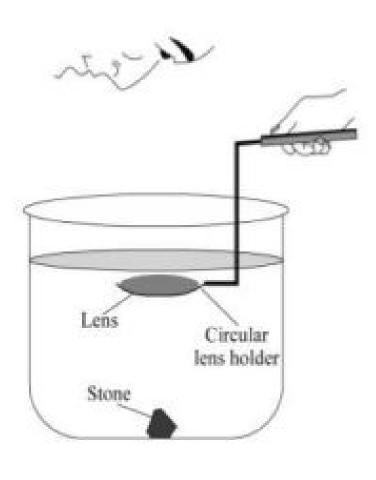
- 1. Write the lens maker's formula and explain the terms in it. (AS-1)(T.Q)
- A. The lens maker's formula is

$$\frac{1}{f} = (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Here, $f \rightarrow$ focal length

n → refractive index

- $R_1, R_2 \rightarrow \text{radii of curvatures}$ 2. How do you verify experimentally that the focal length of a convex lens is increased when it is kept in water? (AS-1)(T.Q)
- A. Aim: To verify change in focal length of a lens when it is dipped in water.


Apparatus: Convex lens of known focal length, circular lens holder, tall cylindrical glass tumbler, black stone, water

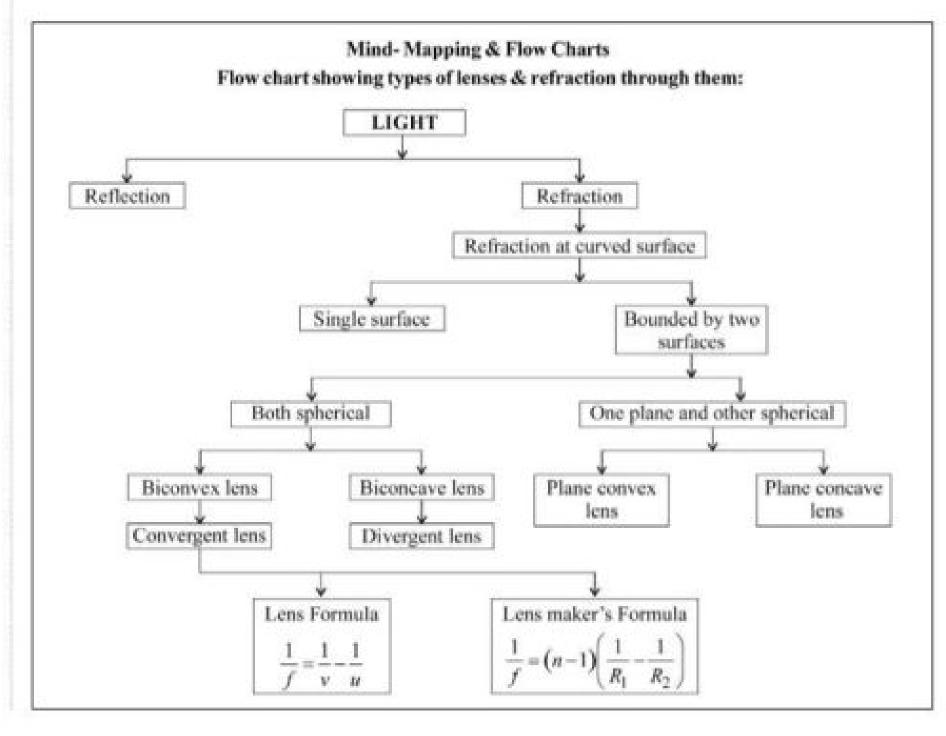
Procedure:

- (1) Let us take a convex lens of known focal length f (say).
- (2) Take a cylindrical vessel such as a glass
- (3) The glass tumbler height must be greater than the focal length of the lens.

(4) The height is taken as four times of the focal

length of the lens. i.e. h = 4f....(1)

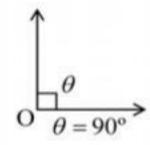
P. SRINIVAS


Physical Science Faculty Hyderabad

9700724464

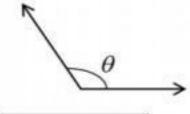
- (5) By keeping a stone inside the vessel, pour the water into the vessel, upto a height such that the height of the water level from the top of the stone is greater than focal length of the lens.
- (6) Now dip the convex lens using the lens holder such that it is at a distance which is less than or equal to focal length of the lens in air.
- (7) Now see through the lens to have a view of the stone. (8) Increase the height of the lens till you are not
- able to see the stone's image. (9) When the lens is dipped to a height which is greater than the focal length of lens in air we are able to see the image. Showing that focal
- length of the lens has increased water. (10) Thus, we conclude that the focal length of the lens depends upon surrounding medium.
- 3. How do you find the focal length of a lens experimentally? (AS-1)(T.Q)
- A. (1) Take V- stand and place it on a long table at the middle.

 - Arrange a convex lens on the V-stand. (3) Light a candle and place it at a long distance along the principal axis.
 - (4) Adjust the screen which is on the other side of lens to get an image on it.
 - (5) Measure the distance of the image from the stand of the lens (v) and also measure the distance between the candle stand of lens (u).

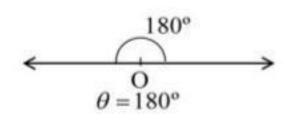


రెండు వ్యతిరేక కిరణాలవల్ల ఏర్పడే కోణం?

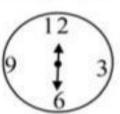
సరಳ ರೆಖಲು, ಕೌಣಾಲು


డిసెంబర్ 6వ తేదీ తరువాయి..

- లంబకోణం / సమకోణం :
- ఒక కోణం విలువ 90° అయితే ఆ కోణంను సమకోణం/లంబకోణం అంటారు.

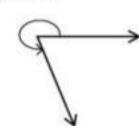

 $\theta = 90^{\circ}$

- అధికకోణం / గురుకోణం :
- ఒక కోణం విలువ 90° కంటె ఎక్కువగానూ, 180°ల కంటె తక్కువగా ఉంటే ఆ కోణంను అధికకోణం అంటారు.

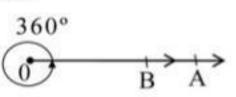


ఇక్కడ $90^{\circ} < \theta < 180^{\circ}$ గా ఉంటుంది.

- $90^{\circ} < \theta < 180^{\circ}$ ను తృప్తిపరిచే ' θ ' విలువ
 - 1) 90°
- 2) 180°
- 3) 159°
- 4) అన్నీ
- సరళకోణం :
- ఒక కోణం విలువ 180° అయితే ఆ కోణాన్ని సరళకోణం అంటారు.



- రెండు వ్యతిరేక కిరణాలవల్ల సరళకోణం ఏర్పరుదుతుంది
- ఉదా: 6 గంటల సమయం అప్పుడు పెద్దముళ్ళు, చిన్నముళ్ళుల మధ్య ఏర్పదు కోణం సరళకోణం.


- పరావర్తన/అధికతర కోణం :
- ఒక కోణం విలువ 180° ల కంటే ఎక్కువ 360° ల కంబె తక్కువగా ఉంబే ఆ కోణాన్ని అధికతర/పరావర్తన కోణం అంటారు.

అనగా ∴ 180°< θ < 360° అయితే అధికతర కోణం.

181°, 245°, 355°, 359°

- సంపూర్ణకోణం :
- 360⁰ల కొలత గల కోణమును సంపూర్ణకోణం అందురు.

NOTE:

తొలి భుజం నుండి అంతిమ భుజం చేసిన భ్రమణం సంపూర్ణమైతే ఏర్పడే కోణంను సంపూర్ణ కోణం అందురు.

- ఒక సంపూర్ణకోణంలో 4 లంబకోణములు లేదా 2 సరళకోణాలుంటాయి.
- పూరక కోణాలు :
- రెండు కోణాల మొత్తం 90'లు అయిన ఆ రెండు కోణాలను ఒకదానికొకటి పూరకకోణాలు అంటారు.

NOTE:

- పూరకకోణాల జతలో ప్రతికోణం అల్పకోణం
- 80° ల యొక్క పూరకకోణం = 10°
- 45° ల యొక్క పూరకకోణం = 45°
- 60° ల యొక్క పూరకకోణం = 30°
- 18° ల యొక్క పూరకకోణం = 72°
- సంపూరక కోణాలు:
- రెండు కోణాల మొత్తం 180 లు అయిన వాటిని ఒకదానికొకటి సంపూరక కోణాలు అంటారు.

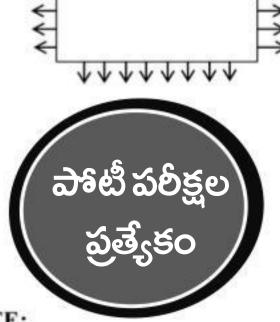
NOTE:

- 1. ఒక జత సంపూరక కోణాలు సమానమైన ప్రతి కోణం 90° ఉందును.
- θ యొక్క సంపూరక కోణం €180°-θ
- $3. 40^{\circ}$ ల యొక్క సంపూరకకోణం = 140°
- 90° ల యొక్క సంపూరకకోణం = 90°
- 130°ల యొక్క సంపూరకకోణం = 50°
- 1° ల యొక్క సంపూరకకోణం = 179°
- సంపూరకకోణాలలో ఒకటి అల్పకోణం అయిన రెందవది అధికకోణం.
- సంయుగ్మకోణాలు :
- రెండు కోణాల మొత్తం 360°లు అయిన ఆరెందు కోణాలను నంయుగ్మకోణాలు అంటారు.

NOTE:

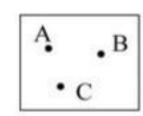
- 1. ఒక జత సంయుగ్మ కోణాలు సమానమైన వానిలో ప్రతి కోణం 180° ఉండును.
- 90° ల యొక్క సంయుగ్మకోణం = 270°
- 180° ల యొక్క సంయుగ్మకోణం = 180°
- 130° ల యొక్క సంయుగ్మకోణం = 230°
- ఒక అల్పకోణం heta యొక్క పూరక మరియు సంపూరకకోణాల మొత్తం $= 270^{\circ} - 2\theta$
- 7. ఒక అల్పకోణం hetaయొక్క పూరక, సంపూరక మరియు నంయుగ్మకోణాల మొత్తం $=630^{\circ}-3\theta$
- క్రింది కోణాలకు పూరక, సంపూరక మరియు సంయుగ్మకోణాలు :

కోణం	పూరకకోణం	సంపూరక	సంయుగ్మ
(θ)	$90-\theta$	ප් _ස ර	కోణం
		$180-\theta$	360 − <i>θ</i>
45°	45°	135°	315°
70°	20°	110°	290°
30°	60°	150°	330°
60°	30°	120^{0}	300°
90°	00	90°	270°
180°	-	00	180°
215^{0}	-	-	145°
360°	8-	-	O°


♦ 0° నుండి 360° వరకు కోణముల పేర్లు :

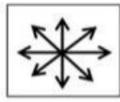
కోణంపేరు	కోణం కొలత	సూచించుకోణం
తూన్యకో ణం	Oo	$\theta = 0^{\circ}$
అల్పకోణం	0° ల కంటే	0° < θ < 90°
	ఎక్కువ మరియు	
	90°లకంటేతక్కువ	
වට සම්	90°	$\theta = 90^{\circ}$
అధికకోణం	90° లకంటే	90°<θ<180°
	మరియు 180°ల	
	కంటే తక్కువ	
సరళకోణం	180°	$\theta = 180^{\circ}$
పరావర్తన	180°ల కంటే	180°<θ<360°
0.00	ఎక్కువ	
	మరియు 360°ల	
>	కంటే తక్కువ	
సంపూర్జకోణం	360°	$\theta = 360^{\circ}$

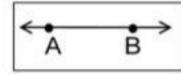
సమతలం/తలం :


నలువైపుల విస్తరించగలిగే చదునైన ప్రదేశాన్ని సమతలం అంటారు.

 $\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge$

NOTE:

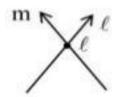

- సమతలం అనంత బిందువుల సమితి.
- సతలీయ బిందువులు :
- ఒక తలంలో గల బిందువులను సతతీయ బిందువులు అంటారు.


ఒక తలంలో గల రేఖలను

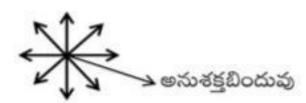
సతతీయ రేఖలు అంటారు

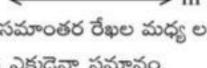
- పై పటంలో ℓ, m, n రేఖలు సతలీయ రేఖలు అవుతాయి
- అపాత ధర్మాలు :
- ఒక సమతలంలో బిందువులకు & రేఖలకు మధ్యగల సంబంధాన్ని సూచించేవి. అపాత ధర్మాలు. అవి మూదు.
- ఒక సమతలంలో ఇవ్వబడిన బిందువుగుండా అనంతమైన రేఖలు గీయవచ్చు.

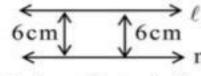
ఒక సమతలం లో ఇవ్వబడిన రెండు బిందువుల గుండా ఒక రేఖను గీయగలం మరియు ఆ రేఖ పూర్తిగా ఆ సమతలం లోనే ఉంటుంది.

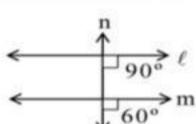


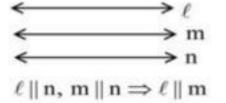
బీవీ రమణ


డైరెక్టర్ పకేఆర్ స్టడీ సల్కల్, తాండూరు, వికారాబాద్ 9441022571


ఒక సమతలం లోని రెండు సరళరేఖలకు ఒకే ఒక ఉమ్మడి బిందువు ఉండే ఆ రేఖలను ఖందన రేఖలు అంటారు. ఆ బిందువులను ఖందన బిందువులు అంటారు.


- మిళితరేఖలు / అనుశక్తరేఖలు:
- మూడు లేదా అంతకంటే ఎక్కువ రేఖలు ఒక ಬಿಂದುವು ಗುಂದ್ (ವಯಾಣಿಸ್ತೆ ವಾಟಿನಿ అనుశక్తరేఖలు/మిళితరేఖలు అంటారు.
- ఆ బిందువును అనుశక్తబిందువు/మిళితబిందువు అంటారు.


- అంతరాళం (Space):
- అనంత బిందువుల సమితిని అంతరాళం అంటారు.
- సమతలాలు, రేఖల, బిందువులు అంతరాళం లోని భాగాలు.
- సమాంతర రేఖలు :
- ఒక సమతలం లోని రెండు రేఖలకు కనీసం ఒక ఉమ్మడి బిందుపు కూడా లేకుండా ఉంటే ఆ రెండు రేఖలు సమాంతర రేఖలు.
- ℓ, m లు సమాంతర రేఖలు అయితే వాటిని గుర్తు పరంగా $\ell \parallel m$ రాస్తారు


రెండు సమాంతర రేఖల మధ్య లంబ (దూరం) దూరం ఎక్మడైనా సమానం.

ఒక సమతలం లోని రెండు రేఖలు ఒక రేఖకు లంబంగా ఉందే ఆ రెందు రేఖలు ఒకదానికొకటి సమాంతరాలు.

 $\ell \perp n$ మరియు $m \perp n$ అయిన $\ell \parallel m$ ఒక సమతలంలోని, రెందు రేఖలు మూదవ రేఖకు సమాంతరం అయితే ఆ రెందు రేఖలు సమాంతరాలు.

