Find the volume of the sphere?

MATHS MODEL PAPER (WITH SOLUTIONS) PAPER -2

SECTION -I

1. Find the value of

$\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)=1$
Sol: Given $\cos ^{2} \theta\left(1+\tan ^{2} \theta\right)$
$=\cos ^{2} \theta\left(\sec ^{2} \theta\right)=\cos ^{2} \theta \times \frac{1}{\cos ^{2} \theta}$
$=1$.
2. Prove that the tangents to a circle at the end points of a diameter are parallel.

Sol: OA , is radius, CAD is tangent $\angle C A O=90^{\circ}$ (angle between the radius and tangent)
similarly $O B$ is radius, $E B F$ is tangent $<F B O=90^{\circ}$ (angle between the radius and tangent)
But $\angle C A O=\angle F B O$ are alternate angles $\therefore \mathrm{CD} / / \mathrm{EF}$
3. A number x is chosen at random from the numbers $-4,-3,-2,-1,0,1,2,3,4$. The probability that $|\mathrm{x}|<3$ is ?
Sol: Total number of outcomes $=n(S)=9$ favorable outcomes $|x|<3$ are
$-2,-1,0,1,2, n(E)=5, P(E)=\frac{n(E)}{n(S)}=\frac{5}{9}$
4. The total surface of a sphere is
$616 \mathrm{sq} . \mathrm{cm}$ find the volume of the sphere.
Sol: Total surface of a sphere
$=4 \pi r^{2}=4 \times \frac{22}{7} \times r^{2}=616$
$\Rightarrow r^{2}=616 \times \frac{7}{22} \times \frac{1}{4}$
$\Rightarrow r^{2}=7 \times 7 \Rightarrow r=7 \mathrm{~cm}$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7=1437.33$ cub. cm .
5. Write the formula to find median of the grouped data and explain the terms involving in it.
Sol: The median for the grouped data can be found by using the formula Median $=l+\left(\frac{\frac{1}{2}-c f}{f}\right) \times h$
where, $l=$ lower limit of the median class. $n=$ number of observations,
cf = cumulative frequency of class preceding to the median class,
$f=$ frequency of the median class. $h=$ class size.
6. Akash said that "In a right triangle two sides are 5 cm and 12 cm and hypotenuse is $13^{\prime \prime}$ do you agree with this statement justify your answer? Sol: Given larger side $=13$ so $13^{2}=169$, square of remaining sides $5^{2}=25$, $12^{2}=144$, now from the values we know that $5^{2}+12^{2}=25+144=169$ (Pythagoras law states that 'the square of hypotenuse is equal to the sum of square of the other two perpendicular sides).

> yes. I agree with Akash statement.
7. Prove that $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$

Sol: Given LHS $=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$

$$
=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}=\frac{2}{1-\sin ^{2} \theta}
$$

$=\frac{2}{\cos ^{2} \theta}=$ RHS $\left(v \cos ^{2} \theta=1-\sin ^{2} \theta\right)$

SECTION -II

8. Find the ratio of the total surface area to the lateral surface area of a cylinder with base radius 80 cm and height 20 cm . Sol: Given radius $\mathrm{r}=80 \mathrm{~cm}$ and height $\mathrm{h}=20 \mathrm{~cm}$
$\frac{\text { Total surface of a cylinder }}{\text { Curved surface area of a cylder }}=\frac{2 \pi r(h+r)}{2 \pi r h}$ $=\frac{h+r}{h}=\frac{20+80}{20}=\frac{100}{20}=\frac{5}{1}$
9. The angle of elevation of top of a tower from a point 50 m away from the base of the tower is 45°. The angle of elevation of top of the flag mounted on the tower 60°. Draw the related diagram.
Sol: Let $\mathrm{AB}=$ distance between the tower and the observation point.
$C D=h e i g h t ~ o f ~ t h e ~ f l a g ~ m o u n t e d ~ o n ~ t h e ~$ tower $=\mathrm{hm}$.
$\mathrm{BC}=$ height of the tower $=\mathrm{x} \mathrm{m}$. $\angle C A B=45^{\circ}, \angle D A B=60^{\circ}$

2. 10th Class Special

10. A number is selected from the first 50 natural numbers. What if the probability that it is a multiple of 3 or 5 ? Sol: Total number of outcomes $n(S)=50$ favorable outcomes are 3, 5, 6, 9, 10, 12, 15, $18,20,21,24,25,27,30,33,35,36,37,39$, $40,42,45,48,50 n(E)=24$ probability (multiple of 3 or 5) $=\frac{24}{50}=\frac{12}{25}$
11.Draw a circle of radius 3 cm . From a point 8 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Construction steps:

1. Draw a circle of radius 3 cm , with centre ' O '
2. Mark point $P, 8 c m$ away from the centre. 3. Join OP and draw the perpendicular bisector of $O P$ which intersect at M 4. Draw a circle with centre M, with radius MP $=$ MO, these circle interest previous circle at Q and Q '.
3. Join PQ and $\mathrm{PQ} /$ we get required tangents.
12 .Find the value of ' k ' of the following data, if the mean of the distribution is 19.5.

x	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	20	25	30	$\mathbf{3 5}$
\mathbf{f}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{5}$	6	3	k	1

Sol:

x	f	$f x$
5	1	5
10	2	20
15	5	75
20	6	120
25	3	75
30	k	$30 k$
35	1	35
Total	$18+k$	$330+30 k$

Mean $x=\frac{2 f x}{E f}=\frac{330+30 k}{18+k}=19.5$ $\Rightarrow 330+30 \mathrm{k}=351+19.5 \mathrm{k}$ $\Rightarrow>30 k-19.5 k=351-330$ $\Rightarrow 10.5 \mathrm{k}=21 \Rightarrow \mathrm{k}=\frac{21}{10.5}=2$
13. If sec $4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$ where $4 A$ is an acute angle, find the value of A.
Sol: Given sec $4 \mathrm{~A}=\operatorname{cosec}\left(\mathrm{A}-20^{\circ}\right)$ $\sec 4 A=\sec \left(90^{\circ}-\left(A-20^{\circ}\right)\right)$
$\Rightarrow \sec 4 A=\sec \left(110^{\circ}-A\right)$
$\Rightarrow 4 \mathrm{~A}=\left(110^{\circ}-\mathrm{A}\right)$
$\Rightarrow 5 A=110^{\circ} \Rightarrow \mathrm{A}=22^{\circ}$

SECTION-III

14(a).Two dice are thrown together, write all the outcomes and Find the probability that the product of the numbers on the top of dice is a multiple of (i) a multiple of 6 (ii) multiple of 12 (iii) factor of 36 .

Sol: Two dice are thrown together the possible outcomes are $6 \times 6=36$
$(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1)$. $(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2)$. $(3,3),(3,4),(3,5),(3,6),(4,1),(4,2)$. $(4,3),(4,4),(4,5),(4,6),(5,1),(5,2)$, $(5,3),(5,4),(5,5),(5,6),(6,1),(6,2)(6,3)$, $(6,4),(6,5),(6,6)$.
product of the outcomes as multiple of 6 in the following cases $(1,6)(2,3),(2,6),(3,2)$, $(3,4),(3,6),(4,3)(4,6),(5,6),(6,1),(6,2)$. $(6,3),(6,4),(6,5),(6,6)=15$
$\mathrm{P}($ multiple of 6$)=\frac{15}{16}=\frac{5}{12}$
product of the outcomes as multiple of 12 in the following cases $(2,6),(3,4),(4,3)$, $(4,6),(6,2),(6,4),(6,6)=7$ $\mathrm{P}($ multiple of 6$)=\frac{7}{36}$ product of the outcome as a factors of 36 in the following cases $(1,1),(1,2)(1,3)$
$(1,4),(1,6),(2,1),(2,2)(2,3),(2,6),(3,1)$. $(3,2),(3,3)(3,4),(3,6),(4,1),(4,3)$, $(6,1),(6,2)(6,3),(6,6)=20$ $\mathrm{P}($ factor of 6$)=\frac{20}{36}=\frac{5}{9}$
14 (b). The angle of elevation of the top of a tower as observed from a point on the ground is ' α ' and moving 'a' meters towards the tower the angle of elevation is " β " prove that the height of the tower is $\frac{a \operatorname{tanatan} \beta}{\tan \beta-\operatorname{tana}}$ Ans:

Let AB be a tower and height $=\mathrm{h} \mathrm{m} \operatorname{In} \Delta$ $A B C, \tan \beta=\frac{h}{x}=>x=\frac{h}{\tan \beta} \ldots$ (1) In $\triangle A B D$ $\tan \alpha=\frac{h}{x+a}=>h=(x+a) \tan \alpha \ldots(2)$ substituting x value from (1) in (2)
$\mathrm{h}=\left[\frac{\mathrm{h}}{\tan \beta}+a\right] \tan \alpha$
$\mathrm{h}=\frac{\tan \alpha}{\tan \mu}+a \tan \alpha$
$\mathrm{h} \tan \beta=\mathrm{h} \tan \alpha+\mathrm{a} \tan \alpha \tan \beta$
$\mathrm{h}(\tan \beta-\tan \alpha)=\mathrm{a} \tan \alpha \tan \beta$

$\therefore \mathrm{h}=\frac{\operatorname{atanatan} \beta}{\tan \beta-\tan a}$

15 (a). Construct a $\triangle A B C$ in which $A B=$ 5 cm and $\angle B=60^{\circ}$ and altitude $\mathrm{CD}=3 \mathrm{~cm}$. and then a triangle $A Q R$ similar to it whose sides are $\frac{3}{2}$ of the corresponding sides of $\triangle A C B$. (Visualisation and Representation)
Sol:

B. Laxminarayana

 Maths Senior Faculty Hyderabad 9849386253

Construction Steps:

1. Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$. B as centre draw an angle of 60°
2. From A and B construct an altitude of $C D=3 \mathrm{~cm}$, which cut the line $B S$ at point C. join AC we get a triangle ABC .
3. Draw a ray BX make an acute angle with $A B$.
4. Locate 3 points (maximum of $\frac{3}{2}$) $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{1}$, $\mathrm{as}^{2} \mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$. 4. Join $A_{2} B$ and draw $A_{1} Q / / A_{2} B$ and $Q R / / B C$, we get a required triangle $A Q R$. 5. $: \triangle \mathrm{ABC}: \triangle \mathrm{AQR}=3: 2$

15 (b). The following data indicates the marks of 53 students in mathematics. Draw less than type ogive for the data and hence find median.

Sol:

Marks	Number of students	Upper Limits	Less than cumulative frequency
$0-10$	5	10	5
$10-20$	3	20	8
$20-30$	4	30	12
$30-40$	3	40	15
$40-50$	3	50	18
$50-60$	4	60	22
$60-70$	7	70	29
$70-80$	9	80	38
$80-90$	7	90	45
$90-100$	8	100	53

from the graph we can notice that median of the data is 64 marks (approximately)

Find the orthocenter of the triangle?

LOCUS

2 Marks

Continued from 15th December
11. Find the orthocenter of the triangle whose sides are given by $4 x-7 y+10=0, x+y=5$ and $7 x+4 y=15$. A: Let the three given lines be the sides $A B, B C, C A$ of the triangle respectively. Slope of $A B=4 / 7$; Slope of $C A=-7 / 4$

Product of the above two slopes $=-1$
Therefore, $A B$ is perpendicular to $C A$, i.e, The triangle is right - angled at A. In a right - angled triangle, the orthocenter is the vertex containing the right angle, i.e, A, We get the coordinates of A by solving the equation of $A B$ and $C A .(4 x-7 y+10=0)$ $\mathrm{x} 4 \Rightarrow 16 \mathrm{x}-28 \mathrm{y}+40=0(7 \mathrm{x}+4 \mathrm{y}-15=0) \times 7 \Rightarrow$ $49 x+28 y-105=0$

On adding the above two equations, we get $65 x$ $-65=0 \Rightarrow x=1$
On substituting this value in the $1^{\text {n }}$ equation, we get $4(1)-7 y+10=0 \Rightarrow 7 y=14 \Rightarrow y=2$
Therefore, the required answer is (1,2).
12. Find the circumcenter of the triangle whose sides are $\mathrm{x}=1, \mathrm{y}=1$ and $\mathrm{x}+\mathrm{y}=1$.
A: Let the three given
lines be the sides $A B, B C, C A$ of the triangle respectively.
We have $A B$ is perpendicular to $B C$, i.e., The triangle is right -
 angled at B. So, AC is the
3. Line L has intercepts a and b on the axes of $c o-$ ordinates. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercepts p and q on the transformed axes. Prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
Sol: Equation of the line in the old system in the intercept form is $\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0$, Length of the perpendicular from origin $=\frac{|0+0-1|}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}$ (1)

Equation of the line in the second system in the intercept form is $\frac{x}{p}+\frac{y}{q}=-\Rightarrow \frac{x}{p}+\frac{y}{q}-1=0$
Length of the perpendicular from origin
$=\frac{|0+0-1|}{\sqrt{\frac{1}{p^{2}}+\frac{1}{2}}}$ \qquad .. (2)

Since the origin and the given line remain unchanged we have from (1) and (2)
$\frac{1}{\sqrt{\frac{1}{a^{2}+\frac{1}{b^{2}}}}}=\frac{1}{\sqrt{\frac{1}{p^{2}+\frac{1}{a^{2}}}}}=\frac{1}{\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)}=\frac{1}{\left(\frac{1}{\left.p^{2}+\frac{1}{a^{2}}\right)}\right.}$ $\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{a^{2}}$

4. If $3 a+2 b+4 c=0$, then show that the equation $a x+b y+c=0$ represents a family of concurrent straight lines and find the point of concurrency.
Sol: Given condition of a, b the line $a x+b y+c=0$
$\left(\frac{3}{4}\right) a+\left(\frac{1}{2}\right) b+c=0$
For all values of a, b the line $a x+b y+c=0$ passes through the point $\left(\frac{3}{4}, \frac{1}{2}\right)$ equation $a x+b y+c=0$ represents a family of concurrent lines point of concurrency is $\left(\frac{3}{4}, \frac{1}{2}\right)$
5. The line $\frac{x}{a}-\frac{y}{b}=1$ meets the X-axis at P. Find the equation of the line perpendicular to the line at P.
Sol: Equation of PQ is $\frac{x}{a}-\frac{y}{b}=1$
Equation of X -axis is $\mathrm{y}=0 \quad \frac{x}{a}=1 \Rightarrow x=a$
Co-ordinates of P are $(\mathrm{a}, \mathrm{0}) \quad \mathrm{PR}$ is perpendicular to PQ
 $\frac{x}{b}+\frac{y}{a}=k$ This line PR
passes through P is
$(\mathrm{a}, 0), \frac{a}{b}+0=k \Rightarrow k=a / b$
Equation of PR is $\frac{x}{b}+\frac{y}{a}=\frac{a}{b}$
6. Find the locus of the foot of the perpendicular from the origin to a variable straight line which always passes through a fixed point (a,b). \qquad
Sol: Suppose m is the
slope of the line $A B$
Equation of $A B$ is $y-b=m(x-a)=m x-m a$
$M x-y+(b-m a)=0 \ldots \ldots \ldots(1)$
$O K$ is perpendicular to $A B$ and passes through the origin O . Suppose co-ordinates of K are (x, y) Equation of $O K$ is $x+m y=0 \ldots \ldots$. (2)

Case (ii): QQ' makes angle 135° with positive X axis $m=\tan 135^{\circ}=\tan \left(180^{\circ}-45^{\circ}\right)=-\tan 45^{\circ}$ Equation of $Q Q^{\prime}$ is $y-0=-1(x-0) \Rightarrow y=-x$
2. Find the equation of the straight line passing through ($-2,4$) and making non-zero intercepts whose sum is zero.
Sol: Equation of the line in the intercept from is
$\frac{x}{a}+\frac{y}{b}=1$. Given of the line $a+b=0 \Rightarrow b=-a$ Equation of the line $\frac{x}{a}-\frac{y}{b}=1$
$\Rightarrow x-y=a$ The line passes through $\mathrm{P}(-2,4)$

$-2-4=a \Rightarrow a=-6$

Equation of the required line $x-y=-6 \Rightarrow x-y+$ $6=0$
7. Find the equation of the straight lines passing through the point ($-10,4$) and making an angle θ with the line $x-2 y=10$ such that $\tan \theta=2$.
Sol: Equation of $Q R$ is $x-2 y=10$ Suppose slope of PQ is m , PQ passes through P(-10,4), Equation of PQ is $y-4=$ $m(x+10)=m x+10 m$
i.e., $m x-y+(10 m+4)=0$ (1)
 $\tan \theta=2 \Rightarrow \cos \theta=\frac{1}{\sqrt{5}}$ $\cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}}} \quad \frac{1}{\sqrt{5}}=\frac{|m+2|}{\sqrt{1+4} \sqrt{m^{2}+1}}$ Squaring and cross multiplying $m^{2}+1=(m+2)^{2}=m^{2}+4 m+4$ $4 m+3=0 \quad m=-\frac{3}{4}$
Case (i) : Co-efficient of $\mathrm{m}^{2}=0$
\Rightarrow One of the roots is ∞
Hence $P R$ is a vertical line
Equation of $P R$ is $X+10=0$
Case3(ii) : $m=\frac{3}{4}$
Substituting in (i)
Equation of $P Q$ is
$-\frac{3}{4} x-y+\left(-\frac{30}{4}+4\right)=0$
$\frac{-3 x-4 y-14}{4}=0 \Rightarrow 3 x+4 y+14=0$
8. Let $\overline{P S}$ be the median of the triangle with vertices $P(2,2)$. $Q(6,-1)$ and $R(7,3)$. Find the equation of the straight line passing through (1,1) and parallel to the median $\overline{P S}$.
Sol: $P(2,2), Q(6,-1) R(7,3)$ are the vertices of $\triangle A B C$; S is the mid point of QR

Co-ordinates of S are

$\left(\frac{6+7}{2}, \frac{-1+3}{2}\right)=\left(\frac{13}{2}, 1\right)$
Slope of $P S=\frac{1-2}{\frac{13}{2}-2}=-\frac{1}{\left(\frac{9}{2}\right)}=-\frac{2}{9}$
$A B$ is parallel to $P S$ and passes through $A(1,-1)$
Equation of AB is $\mathrm{y}+1=-\frac{2}{9}(x-1)$
$9 y+9=-2 x+2$
$2 x+9 y+7=0$
$(1,-1)$
9. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point $(3,2)$
Sol: Equation of the line in the symmetric form is
$\frac{x-3}{\cos \alpha}=\frac{y-2}{\sin \alpha}=r$
Co-ordinates of the point P are $(3+\mathrm{r} \cos \alpha, 2+\mathrm{r} \sin \alpha$
) $=(3+5 \cos \alpha, 2+5 \sin \alpha)$
P is a point on $3 \mathrm{x}-4 \mathrm{y}-1=0$
$3(3+5 \cos \alpha)-4(2+5 \sin \alpha)-1=0$
$9+15 \alpha-20 \sin \alpha=0$
$\tan \alpha=+\frac{3}{4}$
Case (i) $\cos \alpha=\frac{4}{5}, \sin \alpha=\frac{3}{5}$
Case (ii) $\cos \alpha=-\frac{4}{5}, \sin \alpha=-\frac{3}{5}$
Case (i) : co-ordinates of P are
$\left(3+5 \frac{4}{5}, 2+5, \frac{3}{5}\right)=(7,5)$
Case(ii): co-ordination of P are
$\left(3-5 \frac{4}{5}, 2-5 \frac{3}{5}\right)=(-1,-1)$
10. A straight line L is drawn through the point $A(2,1)$ such that its point of intersection with the straight line $x+y=9$ is at a distance of $3 \sqrt{2}$ from A. Find the angle which the line L makes with the positive direction of the X-axis.
Sol: Suppose α is the angle made by the line through
A, with the positive X-axis.
Any point on the line is
$\left(x_{1}+r \cos \alpha_{1}, y_{1}+r \sin \alpha\right)$

$=(2+3 \sqrt{2} \cos \alpha+1+3 \sqrt{2} \sin \alpha)$
This is a point on the line $x+y=9$
$2+3 \sqrt{2} \cos \alpha+1+3 \sqrt{2} \sin \alpha=9$
$3 \sqrt{2}(\cos \alpha+\sin \alpha)=6$

For Feedback... vijetha.nt@gmail.com

K. Kumar
 Maths Sr. Faculty
 Hyderabad
 9492956214

$\cos \alpha+\sin \alpha=\frac{6}{3 \sqrt{2}}=\sqrt{2}$
$\frac{1}{\sqrt{2}} \cdot \cos \alpha+\frac{1}{\sqrt{2}} \sin \alpha=1$
$\cos \alpha \cdot \cos 45^{\circ}+\sin \alpha \sin 45^{\circ}=1$
$\cos \left(\alpha-45^{\circ}\right)=\cos 0^{\circ}$
$\alpha-45^{\circ}=0 \Rightarrow \alpha=45^{\circ}=\frac{\pi}{4}$

7 Marks

1. Find the equation of the straight line passing through the point $(3,4)$ and making X and Y intercepts which are in the ratio 2:3
Sol: Equation of the line in the intercept form is
$\frac{x}{a}+\frac{y}{b}=1$
Given $\frac{a}{b}=\frac{2}{3} \Rightarrow b=\frac{3 a}{2}$
Equation of the line is $\frac{x}{a}+\frac{2 y}{3 a}=1$
This line passes through $P(3,-4)$
$9-8=3 a \Rightarrow 3 a=1$
Equation of the required line is $3 x+2 y=1$
$\Rightarrow 3 \mathrm{x}+2 \mathrm{y}-1=0$
2. A straight line through $P(3,4)$ makes an angle of 60° with the positive direction of the X -axis Find the co-ordinates of the points on that line which are 5 units away from P.
Sol: Co-ordinates of any
point on the line Q are
$\left(x_{1}+r \cos \theta, y_{1}+r \sin \theta\right)$
Given $\left(x_{1}, y_{1}\right)$
$=(3,4)$ i.e., $x_{1}=3, y_{1}=4$
$\theta=60^{\circ} \Rightarrow \cos \theta=\cos 60^{\circ}$

$=\frac{1}{2^{2}}, \sin \theta=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Case(i): $\mathrm{r}=5$
Co-ordinates of Q are $\left(3+5 \frac{1}{2}, 4+5 \frac{\sqrt{3}}{2}\right)$
$=\left(\frac{11}{2}, \frac{8+5 \sqrt{3}}{2}\right)$
Case (ii): $r=-5$
Co-ordinates of Q are $\left(3+5 \frac{1}{2}, 4+5 \frac{\sqrt{3}}{2}\right)$
$=\left(\frac{1}{2}, \frac{8-5 \sqrt{3}}{2}\right)$
3. A straight line through $Q(\sqrt{3}, 2)$ makes an angle $\frac{\pi}{6}$ with the positive direction of the X axis. If the straight line intersects the line $\sqrt{3 x}-4 y+8=0$ at P, find the distance of $P Q$. Note: $A B$ and $P Q$ are not perpendicular. So we have to follow the first method only.
Sol: $P Q$ makes an angle $\frac{\pi}{6}$ with the positive
direction of X -axis.
$\mathrm{m}=$ slope of $P Q=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$P Q$ passes through $Q(\sqrt{3}, 2)$
Equation of PQ is $\mathrm{y}-2=\frac{1}{\sqrt{3}}(x-\sqrt{3})$
$\sqrt{3 y}-2 \sqrt{3}=x-\sqrt{3}$
$x-\sqrt{3 y}=-\sqrt{3}$ \qquad
Equation of AB is $\sqrt{3 x}-4 y+8=0$
$\sqrt{3 x}-4 y=-8$
(1) $\times \sqrt{3} \Rightarrow \sqrt{3} x-3 y=-3$

Subtracting $-y=-5$
From (1), $x=\sqrt{3} y-\sqrt{3}=5 \sqrt{3}-\sqrt{3}$
$=4 \sqrt{3}$ co-ordinates of P are $(4 \sqrt{3}, 5)$
Q are $(\sqrt{5} 2)$
$P Q^{2}=(4 \sqrt{3}-\sqrt{3})^{2}+(5-2)^{2}$
$=27+9=36 \quad P Q=6$ units.

