Find two consecutive positive integers...

IMPORTANT QUESTIONS

1. Find the HCF of 2400 and 2015. By using Euclid algorithm.
A. By Euclid Algorithm
$2400=2015 \times 1+385$
$2015=385 \times 5+90$
$385=90 \times 4+25$
$90=25 \times 3+15$
$25=15 \times 1+10$
$15=10 \times 1+5$
$10=5 \times 2+0$
$\therefore \mathrm{HCF}=5$
2. List all the sub-sets of the set S. Where $\mathrm{S}=\{x / x$ is a letter of the word "monsoon" $\}$
A. The Roster form of the given set in
$\mathrm{S}=\{\mathrm{m}, \mathrm{o}, \mathrm{n}, \mathrm{s}\}$
Sub sets of S are
$\varnothing, S,\{m\},\{o\},\{n\},\{s\}$,
$\{m, o\},\{m, n\}\{m, s\}$,
$\{0, n\}\{0, s\},\{n, s\}$,
$\{\mathrm{m}, \mathrm{o}, \mathrm{n}\},\{\mathrm{m}, \mathrm{o}, \mathrm{s}\}$,
$\{\mathrm{m}, \mathrm{n}, \mathrm{s}\},\{\mathrm{o}, \mathrm{n}, \mathrm{s}\}$
3. Check whether $-\sqrt{12}, \sqrt{12}$ are the zeroes of the Polynomial $2 x^{2}-24$.
A. Let $\mathrm{p}(x)=2 x^{2}-24$
for $\mathrm{p}(-\sqrt{ } 12)^{2}=2(-\sqrt{ } 12)^{2}-24$
$=24-24=0$
and $\mathrm{p}(\sqrt{ } 12)=2(\sqrt{ } 12)^{2}-24$
$=24-24=0$
As $p(-\sqrt{ } 12)=0$ and
$p(\sqrt{ } 12)=0 \Rightarrow-\sqrt{ } 12$ and $\sqrt{ } 12$ are the zeroes of $\mathrm{p}(x)$
4. Srilatha says that the order of the polynomial $\left(x^{3}-6\right)\left(x^{2}+4\right)$ is 6 . Do you agree with her? How?
A. $\left(x^{3}-6\right)\left(x^{2}+4\right)=x^{3}\left(x^{2}+4\right)-6\left(x^{2}+4\right)$ $=x^{3} \cdot x^{2}+4 x^{3}-6 x^{2}-24$ $=x^{5}+4 x^{3}-6 x^{2}-24\left[\because x^{\mathrm{m}} \cdot x^{\mathrm{n}}=x^{\mathrm{m}+\mathrm{n}}\right]$ As the power of the given polynomial is 5 . I do not agree with Srilatha.
5. Nagaraju stated that $(6,4)$, and $(-6,4)$ are the points on the line which is parallel to X -axis. Discuss.
A. Let $\mathrm{M}(6,4)$ and $\mathrm{N}(-6,4)$ are the two given points. slope of $\overrightarrow{\mathrm{MN}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{x_{2}-x_{1}}=\frac{4-4}{-6-6}=0$
As the slope of the line is zero. It is parallel to x -axis and also the points of the form $(x, \mathrm{k}),(\mathrm{y}, \mathrm{k})$.
\therefore We can conclude that the statement given by Nagaraju is true.
6. Find the roots of the Quadratic equation x^{2} $+4 x+5=0$ if they exist.
A. For the given quadratic equation, $x^{2}+4 x+$ $5=0$
$\mathrm{a}=1, \mathrm{~b}=4, \mathrm{c}=5$.
Discriminant $=b^{2}-4 a c$

$=(4)^{2}-4(1)(5)$
$=16-20=-4<0$
as, $\mathrm{b}^{2}-4 \mathrm{ac}<0$
$\Rightarrow \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}$ has no real roots.
\therefore There are no real roots for the given equation.
7. How can we say $7 \times 13 \times 23+7$ and 5×7 $\times 9 \times 11+11$ are composite numbers.
A. Given numbers are $7 \times 13 \times 23+7=7(13$ $\times 23+1)=7 \times 300$
and similarly $5 \times 7 \times 9 \times 11+11=11(5 \times$ $7 \times 9+1)=11 \times 316$
i.e. the two given numbers can be written as the product of two numbers
\Rightarrow They are composite.
8. Find two consecutive positive integers, sum of whose squares is 1201 .
A. Let x and $(x+1)$ be the two positive consecutive integers.
Where $x^{2}+(x+1)^{2}=1201$
$\Rightarrow x^{2}+x^{2}+2 x+1=1201$
$\Rightarrow 2 x^{2}+2 x+1=1201$
$\Rightarrow 2 x^{2}+2 x-1200=0$
$\Rightarrow x^{2}+x-600=0$
$\Rightarrow x^{2}+25 x-24 x-600=0$
$\Rightarrow x(x+25)-24(x+25)=0$
$\Rightarrow(x+25)(x-24)=0$
$\Rightarrow x+25=0$ or $x-24=0$
$\Rightarrow x \neq-25 \quad$ or $x=24$
as $x=24, x+1=24+1=25$
$\therefore 24$ and 25 are the two required consecutive positive integers.
9. Plot $\mathrm{L}(2,4) \mathrm{M}(-6,8) \mathrm{N}(14,-2)$ on the coordinate plane and join them. what do you observe?
A. The three given points are
$\mathrm{L}(2,4), \mathrm{M}(-6,8)$
and $\mathrm{N}(14,-2)$
Scale:
On the x-axis $1 \mathrm{~cm}=1$ unit On the y-axis $1 \mathrm{~cm}=1$ unit

From the graph, I observed that the three given points are collinear.
10. Show that $3+2 \sqrt{6}$ is an irrational number
A. We need to prove $3+2 \sqrt{ } 6$ is an Irrational number. Let us assume that $3+2 \sqrt{ } 6$ is a rational number
\Rightarrow There exist two integers p and q such that $3+2 \sqrt{6}=\mathrm{p} / \mathrm{q}$
$\Rightarrow 2 \sqrt{ } 6=\mathrm{p} / \mathrm{q}-3$
$\sqrt{6}=1 / 2[p / q-3]$
$\sqrt{6}=\frac{p-3 q}{2 q}$ which is a rational number
this is a contradiction to our assumption that $3+2 \sqrt{6}$ is a rational number. As $\sqrt{6}$ is a irrational number.
Hence $3+2 \sqrt{ } 6$ is an irrational number
Hence proved.
11. In an Arithmetic progression the last term is 28 and the sum of 9 terms is 144 then find the first term.
A. Given that in an arithmetic progression $l=28$
$S_{9}=144, a=$?
we have, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\mathrm{a}+l]$
$\Rightarrow 144=\frac{9}{2}[a+28]$
$\Rightarrow \mathrm{a}+28=144 \times \frac{2}{9}$

$$
a+28=32 \Rightarrow a=4
$$

12. If $(7,-2)(3, k)$ and $(5,1)$ are collinear, then find the value of k .
A. Given that $L(7,-2), M(3, k)$ and $N(5,1)$ are collinear.
\Rightarrow area of $\Delta \mathrm{LMN}=0$
$\Rightarrow 1 / 2 \mid x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+$
$x_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \mid=0$
$\Rightarrow{ }^{1 / 2}|7(\mathrm{k}-5)+3[1-(-2)]+5(-2-\mathrm{k})|=0$
$\Rightarrow|7 \mathrm{k}-35+9-10-5 \mathrm{k}|=0$
$\Rightarrow|2 \mathrm{k}-36|=0$
$\Rightarrow 2 \mathrm{k}=36 \Rightarrow \mathrm{k}=18$
13. Can we draw a triangle with the vertices $(13,14),(5,8)$ and $(1,5)$? Specify the reason why?
A. Let $\mathrm{L}(13,14), \mathrm{M}(5,8)$ and $\mathrm{N}(1,5)$ are the given points.
Now,
Distance between the two points
L and M. i.e. $\mathrm{LM}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(5-13)^{2}+(8-14)^{2}}$
$=\sqrt{64+36}=\sqrt{100}=10$
Similarly,
$M N=\sqrt{(1-5)^{2}+(5-8)^{2}}$
$=\sqrt{16+9}=\sqrt{25}=5$
and
$L N=\sqrt{(1-13)^{2}+(5-14)^{2}}$
$=\sqrt{144+81}=\sqrt{225}=15$
We have $\mathrm{LM}+\mathrm{MN}=\mathrm{LN}$
In a triangle, the sum of
any two sides must be
greater than the third side.
Hence the given 3 points cannot form a triangle.
14. Find the zeros of the polynomial $\mathrm{P}(\mathrm{m})=$ $4 m^{2}-4 m+1$ and also verify the relationship between the zeroes and the coefficients.
A. Let $p(m)=4 m^{2}-4 m+1$ be the given polynomial.
We have $4 m^{2}-4 m+1=4 m^{2}-2 m-2 m+1$
$=2 \mathrm{~m}[2 \mathrm{~m}-1]-1[2 \mathrm{~m}-1]$
$=(2 m-1)(2 m-1)$
$=(2 m-1)^{2}$
For $4 m^{2}-4 m+1=0$,
where $\mathrm{a}=4, \mathrm{~b}=-4, \mathrm{c}=1$
$\Rightarrow(2 \mathrm{~m}-1)^{2}=0$
$\Rightarrow \mathrm{m}=1 / 2$
$\therefore 1 / 2$ and $1 / 2$ are the two zeroes of $\mathrm{p}(\mathrm{m})$
Now, sum of the zeroes $=1 / 2+1 / 2=1$
$\frac{-b}{a}=\frac{-(-4)}{4}=1$
\therefore sum of the zeroes
$=\frac{-b}{a}=-\left[\frac{\text { Co-efficient of } \mathrm{m}}{\text { Co-efficient of } \mathrm{m}^{2}}\right]$
Product of the zeroes $=1 / 2 \times 1 / 2=1 / 4$ $\mathrm{c} / \mathrm{a}=1 / 4$
\therefore Product of the zeroes
$=\frac{c}{a}=\frac{\text { constant }}{\text { Co-efficient of } x^{2}}$
Hence verified.
15. Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x$
+2 if $\sqrt{ } 2$ and $-\sqrt{ } 2$ are the two zeroes of the polynomial.
A. Let $\mathrm{f}(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x+2$ as $\sqrt{ } 2$ are the zeroes of $\mathrm{f}(x)$
$\Rightarrow(x-\sqrt{ } 2),(x+\sqrt{ } 2)$ are the factors of $\mathrm{f}(x)$ and $(x-\sqrt{ } 2)(x+\sqrt{ } 2)=x^{2}-2$ also a factor of $\mathrm{f}(x)$

$$
\begin{gathered}
\left.x^{2}-2\right) \\
2 x^{4}-3 x^{3}-3 x^{2}+6 x+2\left(2 x^{2}-3 x-1\right. \\
-2 x^{4}+2 x^{2}
\end{gathered}
$$

+

$-3 x^{3}-x^{2}+6 x+2$
$+3 x^{3} \pm 6 x$
$-x^{2}+2$
$\frac{-x^{2}+2}{0}$
$\Rightarrow \mathrm{f}(x)=\left(x^{2}-2\right)\left(2 x^{2}-3 x-1\right)$
$2 x^{2}-3 x+1=2 x^{2}-2 x-x+1$
$=2 x[x-1]-1[x-1]$
$=(2 x-1)(x-1)$
if $\mathrm{f}(x)=0$
$\Rightarrow 2 x-1=0$ or $x-1=0$
$\Rightarrow x=1 / 2$ or $x=1$
$\therefore-\sqrt{ } 2, \sqrt{ } 2,1$ and $1 / 2$ are the factors of
$\mathrm{f}(x)$

