అమరావతి I బుధవారం I డిసెంబర్ I 25 I 2019											
•											
మంగళవారం	ಬುಧವಾರಂ	గురువారం	శుక్రవారం	ಸನಿವಾರಂ	<mark>ප</mark> ඩි කංරි ර						
జనరల్ స్టడీస్/ఆర్ఆర్జి	జేఈఈ–మెయిన్	జనరల్ స్టడీస్/ఆర్ఆర్జ్	జనరల్ స్టడీస్/ఆర్ఆర్జి	జనరల్ స్టడీస్/ఆర్ఆర్జి	లెర్న్ ఇంగ్లిష్/ Learn English						
Tenth Class Special	Tenth Class Special	Tenth Class Special	Tenth Class Special	Tenth Class Special	Tenth Class Special						
	ర్థవారం 2019 <mark>మంగళవారం</mark> జనరల్ స్టడీస్/అర్ఆర్జి Tenth Class Special	ర్థవారం 2019 <mark>మంగళవారం</mark> జనరల్ స్టడీస్/ఆర్ఆర్జి దేరు దిరిత్ స్టడీస్/ఆర్ఆర్జి Tenth Class Special	వవారం 2019 మంగళవారం బుధవారం గురువారం జనరల్ స్టడీస్/అర్అర్జి జేఈఈ–మెయిన్ జనరల్ స్టడీస్/అర్అర్జి Tenth Class Special Tenth Class Special Tenth Class Special	వవారం 2019 మంగకవారం బుధవారం గురువారం శుక్రవారం జనరల్ స్టడీస్/ఆర్ఆర్జి Tenth Class Special Tenth Class Special Tenth Class Special Tenth Class Special	వవారం 2019 పంగరా పంగా పంగా పంగా పంగా పంగా పంగా పంగా పంగ						

When the potential difference across the capacitors...

Dr. Ch.RamaKrishna Subject expert Dr. RK's Classes

MODEL QUESTIONS

- 1. The ratio of surface tensions of mercury and water is given to be 7.5 while the ratio of their densities is 13.6. Their contact angles, with glass, are close to 135° and 0° , respectively. It is observed that mercury gets depressed by an amount h in a capillary tube of radius r_1 , while water rises by the same amount h in a capillary tube of radius r_2 . The ratio, (r_1/r_2) , is then close to 1) 2/3 2) 3/5 3) 2/5 4) 4/5
- 2. A rod, length L at room 5. Two light identical springs of temperature and uniform area of cross section A, is made of a metal having coefficient of linear

50°C, finally no ice is left and the water is at 0°C. The value of latent heat of ice, in cal g^{-1} is 1) $\frac{5M_1}{M_2}$ - 50 2) $\frac{50M_2}{M_1}$ 3) $\frac{50M_2}{M_1} - 5$ 4) $\frac{5M_2}{M_1} - 5$

4. Two materials having coefficients of thermal conductivity 3K and K and thickness d and 3d, respectively, are joined to form a slab as shown in the figure. The temperatures of the outer surfaces are θ_2 and θ_1 respectively ($\theta_2 > \theta_1$). The temperature at the interface is:

$$\overline{\theta}_{2} \begin{array}{c|c} d & 3d \\ \hline \overline{\theta}_{2} \\ \hline 3K & K \\ \hline \end{array} \overline{\theta}_{1}$$

$$1) \begin{array}{c} \frac{\theta_{2} + \theta_{1}}{2} & 2) \\ \frac{\theta_{1}}{10} + \frac{9\theta_{2}}{10} \\ \hline 3) \\ \frac{\theta_{1}}{3} + \frac{2\theta_{2}}{3} & 4) \\ \frac{\theta_{1}}{6} + \frac{5\theta_{2}}{6} \end{array}$$

spring constant k are attached horizontally at the two ends of a uniform horizontal rod AB of

6. Let a total charge 2Q be distributed in a sphere of radius R, with the charge density given by $\rho(r) = kr$, where r is the distance from the centre. Two charges A and B, of –Q each, are placed on diametrically opposite points, at equal distance, a, from the centre. If A and B do not

1) $v \propto e^{+r/r_0}$	2) $v \propto \ln\left(\frac{r}{r_0}\right)$
$3) \ v \propto \left(\frac{r}{r_0}\right)$	4) $_{v \propto} \sqrt{\ln\left(\frac{r}{r_0}\right)}$

8. In the circuit the current in each resistance is

- 9. The magnitude of the magnetic field at the centre of an equilateral triangular loop of side 1 m which is carrying a current of 10 A is: [Take $_0 = 4\pi \quad 10^{-7}$ NA^{-2}] 1) 18 T 2) 3 T
- 3) 1 T 4) 9 T **10.** An ideal capacitor of capacitance
 - 0.2 F is charged to a potential difference of 10 V. The charging

- 1) $\vec{E} = B_0 c \sin(kx + \omega t) \hat{k} V / m$ 2) $\vec{E} = \frac{B_0}{c} \sin(kx + \omega t)\hat{k} V / m$ 3) $\vec{E} - B_0 c \sin(kx + \omega t) \hat{k} V / m$
- 4) $\vec{E} = B_0 c \sin(kx \omega t) \hat{k} V / m$
- 12. A thin convex lens L (refractive index = 1.5) is placed on a plane mirror M. When a pin is placed at A, such that OA = 18 cm, its real inverted image is formed at A itself, as shown in figure. When a liquid of refractive index 1 is put between the lens and the mirror, the pin has to be moved to A', such that OA' = 27cm, to get its inverted real image at A' itself. The value of 1 will be

3.	expansion $\alpha/^{\circ}$ C. It is observed that an external compressive force F, is applied on each of its ends, prevents any change in the length of the rod, when its temperature rises by Δ TK. Young's modulus, Y, for this metal is 1) $\frac{F}{2A\alpha\Delta T}$ 2) $\frac{F}{A\alpha(\Delta T - 273)}$ 3) $\frac{F}{A\alpha\Delta T}$ 4) $\frac{2F}{A\alpha\Delta T}$ When M ₁ gram of ice at -10°C (specific heat = 0.5 cal g ⁻¹ °C ⁻¹) is added to M ₂ gram of water at	length l and mass m. The rod is pivoted at its centre 'O' and can rotate freely in horizontal plane. The other ends of the two springs are fixed to rigid supports as shown in figure. The rod is gently pushed through a small angle and released. The freque- ncy of resulting oscillation is	7.	experience any force, then 1) $a = \frac{3R}{2^{1/4}}$ 2) $a = \frac{R}{\sqrt{3}}$ 3) $a = 8^{-1/4} R$ 4) $a = 2^{-1/4} R$ A positive point charge is released from rest at a distance r_0 from a positive line charge with uniform density. The speed (v) of the point charge, as a function of instantaneous distance r from line charge, is proportional to $\int_{r_0}^{r_0}$	battery is then disconnected. The capacitor is then connected to an ideal inductor of self inductance 0.5 mH. The current at a time when the potential difference across the capacitor is 5 V, is 1) 0.17 A 2) 0.15 A 3) 0.34 A 4) 0.25 A 11. Magnetic field in a plane electromagnetic wave is given by $\vec{B} = B_0 \sin(kx + \omega t)\hat{j}T$. Expression for corresponding electric field will be : (where c is speed of light)	3) $\sqrt{3}$ 4) $\frac{3}{2}$ 13. Mobility of electrons in a semiconductor is defined as the ratio of their drift velocity to the applied electric field. If, for an n-type semiconductor, the density of electrons is 10^{19} m ⁻³ and their mobility is $1.6 \text{ m}^2/(\text{V.s})$ then the resistivity of the semiconductor (since it is an n-type semiconductor (since it is an n-type semiconductor of holes is ignored) is close 1) 2 Ω m 2) 0.4 Ω m 3) 4 Ω m 4) 0.2 Ω m
1	Solutions	$\frac{x=1/2}{\theta}$		$K = \frac{2Q}{-p^4}$	$B = \frac{0^{I}}{1 + 1^{2}} = 3$	12. 2; For image to form at object
1.	$h = \frac{2S_1 \cos \theta}{r^2 r^2}$			$QE = \frac{1}{4\pi c} \frac{QQ}{(2)^2}$	$\frac{4\pi\sqrt{3l}}{2}$	back to object. Hence must
	$h = \frac{2S_2 \cos \theta_2}{r_2 \rho_2 g} \Longrightarrow \frac{r_1}{r_2} = \frac{2}{5}$	⊢ 000000 - Kx	7.	$R = a8^{\frac{1}{4}}$ 4;	$= \frac{0i\sqrt{3}}{2\pi l} = \frac{4\pi \ 10^{-7} \ 10 \ \sqrt{3}}{2\pi \ 1}$	Case 1: Object will be at focus of lens
2.	3; Young's modulus	$\tau = -2Kx\frac{l}{2}\cos\theta$		$\frac{1}{2}mV^2 = -q(V_f - V_i)$	$= 20\sqrt{3}$ $10^{-7} = 3$ T	$\frac{1}{f} = (-1)\left(\frac{1}{R} - \frac{1}{-R}\right) = \frac{1}{-18}$
	$y = \frac{stress}{strain} = \frac{F/A}{(\Delta \ell / \ell)} = \frac{F}{A(\alpha \Delta T)}$	$\Rightarrow \tau = \left(\frac{Kl^2}{2}\right)\theta = -C\theta$		$E = \frac{\lambda}{2\pi\varepsilon_0 r}$	10. 1; From energy conservation $\frac{1}{2} \times 0.2 \times 10^{6} \times 10^{2} + 0 = \frac{1}{2} \times 0.2$	\Rightarrow R = 18 cm Case2 : Retraction at 1 st surface:
3.	3; Heat lost = Heat gain	$\left[Kl^{2} \right]$		$\Delta V = \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{r_0}{r}\right)$	$\times 10^{-6} \times 5^2 + \frac{1}{2} \times 0.5 \times 10^{-3} 1^2$	$\frac{1}{-27} - \frac{1.5}{V_1} = \frac{1 - 1.5}{R} \dots (i)$
	$\Rightarrow M_2 1 50 = M_1 0.5 10$	$\Rightarrow f = \frac{1}{2} \sqrt{\frac{C}{L}} = \frac{1}{2} \sqrt{\frac{R}{2}}$		$\frac{1}{2}mv^2 = \frac{-q\lambda}{2\pi a}\ln\frac{r_0}{r_0}$	$I = \frac{10}{10} A = 0.17A$	2^{nd} retraction
	$+ M_1 L_f$ $L_f = \frac{50M_2 - 5M_1}{2} = \frac{50M_2}{-5} - 5$	$\frac{2\pi \sqrt{T}}{2\pi} \frac{2\pi}{12}$		$2 \qquad 2\pi\epsilon_0 \qquad r$	II. I; Electric field amplitude is related to B_0 with speed of EM	$\frac{1.5}{V_1} - \frac{1.5}{\infty} = \frac{1.5}{-R} \dots (ii)$
4.	M_1 M_1 2; At steady state:	$\Rightarrow f = \frac{1}{2\pi} \sqrt{\frac{6K}{M}}$		$V \propto \sqrt{ln\left(\frac{r}{r_0}\right)}$	wave is $c = E_0/B_0 \Rightarrow E_0 = cB_0$ As wave is traveling along -x	From (i), (ii) 4
	$\left(\frac{\Delta q}{\Delta t}\right)_{t} = \left(\frac{\Delta q}{\Delta t}\right)_{t}$	6. 3; $\int_{0}^{\theta} kr 4\pi r^{2} dr$	8.	2; Potential difference across	direction so vector $\vec{E} \vec{B}$ must be	$\frac{-13}{3}$
	$\frac{3kA(\theta_2 - \theta)}{1} = \frac{kA(\theta - \theta_1)}{1}$	$E4\pi a^2 = \frac{e_0}{e_0}$	9.	$2; \qquad \qquad$	propagation of EM wave i.e.	$\sigma = ne \frac{v_d}{E} = ne$
	$d \qquad 3d$ $\rightarrow \theta - \frac{\theta_1 + 9\theta_2}{\theta_1 + 9\theta_2}$	$E = \frac{K 4\pi a}{4 4\pi \varepsilon_0}$		· c	along $-i$ direction. So here electric field can be given as	$\frac{E}{1 = \sigma = \frac{1}{1}}$
	10	$2Q = \int_0^R kr 4\pi r^2 dr$		i = 10A; l = 1m	$\vec{E} = E_0 \sin(kx + \omega t)\hat{k} V / m$	$\sigma n_e e_e$
5.	1;	-0		$_0 = 4\pi 10^{-7} \frac{1}{A^2}$	$\vec{E} = B_0 c \sin(kx + \omega t) \hat{k} V / m$	$= \frac{10^{19} \ 1.6 \ 10^{-19} \ 1.6}{1.6} = 0.4\Omega m$

