- ఈ వారం విద్యలో..

సోమవారం మంగళవారం
జనరల్ స్టడీస్/ఆర్ఆర్బీ

-

When the potentiol lifference across the capacitors...

MODEL QUESTIONS

1. The ratio of surface tensions of mercury and water is given to be 7.5 while the ratio of their densities is 13.6. Their contact angles, with glass, are close to 135° and 0°, respectively. It is observed that mercury gets depressed by an amount h in a capillary tube of radius r_{1}, while water rises by the same amount h in a capillary tube of radius r_{2}. The ratio, $\left(r_{1} / r_{2}\right)$, is then close to
1) $2 / 3$
2) $3 / 5$
3) $2 / 5$
4) $4 / 5$
2. A rod, length L at room temperature and uniform area of cross section A , is made of a metal having coefficient of linear expansion $\alpha /{ }^{\circ} \mathrm{C}$. It is observed that an external compressive force F, is applied on each of its ends, prevents any change in the length of the rod, when its temperature rises by $\Delta \mathrm{TK}$. Young's modulus, Y, for this metal is
1) $\frac{F}{2 A \alpha \Delta T}$
2) $\frac{F}{A \alpha(\Delta T-273)}$
3) $\frac{F}{A \alpha \Delta T}$
4) $\frac{2 F}{A \alpha \Delta T}$
3. When M_{1} gram of ice at $-10^{\circ} \mathrm{C}$ $\left(\right.$ specific heat $\left.=0.5 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right)$ is added to M_{2} gram of water at
$50^{\circ} \mathrm{C}$, finally no ice is left and the water is at $0^{\circ} \mathrm{C}$. The value of latent heat of ice, in cal g^{-1} is
1) $\frac{5 M_{1}}{M_{2}}-50$
2) $\frac{50 M_{2}}{M_{1}}$
3) $\frac{50 M_{2}}{M_{1}}-5$
4) $\frac{5 M_{2}}{M_{1}}-5$
4. Two materials having coefficients of thermal conductivity 3 K and K and thickness d and 3d, respectively, are joined to form a slab as shown in the figure. The temperatures of the outer surfaces are θ_{2} and θ_{1} respectively $\left(\theta_{2}>\theta_{1}\right)$. The temperature at the interface is:

\[

\]

5. Two light identical springs of spring constant k are attached horizontally at the two ends of a uniform horizontal rod AB of length l and mass m . The rod is pivoted at its centre ' O ' and can rotate freely in horizontal plane. The other ends of the two springs are fixed to rigid supports as shown in figure. The rod is gently pushed through a small angle and released. The frequency of resulting oscillation is

Special

1) $v \propto e^{+r / r_{0}}$
2) $v \propto \ln \left(\frac{r}{r_{0}}\right)$
3) $v \propto\left(\frac{r}{r_{0}}\right)$
4) $v \propto \sqrt{\ln \left(\frac{r}{r_{0}}\right)}$
8. In the circuit the current in each resistance is

1) $\frac{1}{2 \pi} \sqrt{\frac{6 k}{m}}$
2) $\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$
3) $\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
4) $\frac{1}{2 \pi} \sqrt{\frac{3 k}{m}}$
6. Let a total charge 2 Q be distributed in a sphere of radius R, with the charge density given by $\rho(\mathrm{r})=\mathrm{kr}$, where r is the distance from the centre. Two charges A and B, of $-Q$ each, are placed on diametrically opposite points, at equal distance, a, from the centre. If A and B do not experience any force, then
1) $a=\frac{3 R}{2^{1 / 4}}$
2) $a=\frac{R}{\sqrt{3}}$
3) $a=8^{-1 / 4} R$
4) $a=2^{-1 / 4} R$
7. A positive point charge is released from rest at a distance r_{0} from a positive line charge with uniform density. The speed (v) of the point charge, as a function of instantaneous distance r from line charge, is proportional to

Solutions

1. 3;

$$
\begin{aligned}
& h=\frac{2 S_{1} \cos \theta}{r_{1} \rho_{1} g} \\
& h=\frac{2 S_{2} \cos \theta_{2}}{r_{2} \rho_{2} g} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{2}{5}
\end{aligned}
$$

2. 3;

> Young's modulus

$$
y=\frac{\text { stress }}{\text { strain }}=\frac{F / A}{(\Delta \ell / \ell)}=\frac{F}{A(\alpha \Delta T)}
$$

3. 3 ;

Heat lost $=$ Heat gain
$\Rightarrow \mathrm{M}_{2} \times 1 \times 50=\mathrm{M}_{1} \times 0.5 \times 10$
$+\mathrm{M}_{1} . \mathrm{L}_{\mathrm{f}}$
$\begin{aligned} L_{f} & =\frac{50 \mathrm{M}_{2}-5 \mathrm{M}_{1}}{\mathrm{M}_{1}}=\frac{50 \mathrm{M}_{2}}{\mathrm{M}_{1}}-5\end{aligned}$
4. 2; At steady state:

$$
\begin{aligned}
& \left(\frac{\Delta q}{\Delta t}\right)_{1}=\left(\frac{\Delta q}{\Delta t}\right)_{2} \\
& \frac{3 k A\left(\theta_{2}-\theta\right)}{d}=\frac{k A\left(\theta-\theta_{1}\right)}{3 d} \\
& \Rightarrow \theta=\frac{\theta_{1}+9 \theta_{2}}{10}
\end{aligned}
$$

5. 1 ;

$$
\begin{aligned}
& K=\frac{2 Q}{\pi R^{4}} \\
& Q E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q Q}{(2 a)^{2}} \\
& \mathrm{R}=\mathrm{a}^{1 / 4} \\
& \mathbf{4 ;} \\
& \frac{1}{2} m V^{2}=-q\left(V_{f}-V_{i}\right) \\
& E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \\
& \Delta V=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{0}}{r}\right) \\
& \frac{1}{2} m v^{2}=\frac{-q \lambda}{2 \pi \varepsilon_{0}} \ln \frac{r_{0}}{r} \\
& V \propto \sqrt{\ln \left(\frac{r}{r_{0}}\right)}
\end{aligned}
$$

7. $4 ;$
8. 2; Potential difference across each resistor is zero.
9. 2 ;

$\mathrm{i}=10 \mathrm{~A} ; l=1 \mathrm{~m}$
$\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}}$
$B=\frac{\mu_{0} I}{\frac{4 \pi \sqrt{3} l}{2}} \times 3$
$=\frac{\mu_{0} i \sqrt{3}}{2 \pi l}=\frac{4 \pi \times 10^{-7} \times 10 \times \sqrt{3}}{2 \pi \times 1}$
$=20 \sqrt{3} \times 10^{-7}=3 \mu T$
10. 1; From energy conservation $1 / 2 \times 0.2 \times 10^{6} \times 10^{2}+0=1 / 2 \times 0.2$ $\times 10^{-6} \times 5^{2}+1 / 2 \times 0.5 \times 10^{-3} 1^{2}$ $I=\frac{\sqrt{3}}{10} A=0.17 A$
11. 1; Electric field amplitude is related to B_{0} with speed of EM wave is $c=E_{0} / B_{0} \Rightarrow E_{0}=\mathrm{cB}_{0}$ As wave is traveling along -x direction so vector $\vec{E} \times \vec{B}$ must be along the direction of propagation of EM wave i.e. along $-\hat{i}$ direction. So here electric field can be given as
$\vec{E}=E_{0} \sin (k x+\omega t) \hat{k} V / m$
$\vec{E}=B_{0} c \sin (k x+\omega t) \hat{k} V / m$
1) $\vec{E}=B_{0} c \sin (k x+\omega t) \hat{k} V / m$
2) $\vec{E}=\frac{B_{0}}{c} \sin (k x+\omega t) \hat{k} V / m$
3) $\vec{E}-B_{0} c \sin (k x+\omega t) \hat{k} V / m$
4) $\vec{E}=B_{0} c \sin (k x-\omega t) \hat{k} V / m$
12. A thin convex lens L (refractive index $=1.5$) is placed on a plane mirror M . When a pin is placed at A , such that $\mathrm{OA}=18 \mathrm{~cm}$, its real inverted image is formed at A itself, as shown in figure. When a liquid of refractive index μ_{1} is put between the lens and the mirror, the pin has to be moved to A^{\prime}, such that $\mathrm{OA}^{\prime}=27 \mathrm{~cm}$, to get its inverted real image at A^{\prime} itself. The value of μ_{1} will be

$$
\begin{array}{ll}
\text { 1) } \sqrt{ } 2 & \text { 2) } \frac{4}{3} \\
\text { 3) } \sqrt{ } 3 & \text { 4) } \frac{3}{2}
\end{array}
$$

13. Mobility of electrons in a semiconductor is defined as the ratio of their drift velocity to the applied electric field. If, for an ntype semiconductor, the density of electrons is $10^{19} \mathrm{~m}^{-3}$ and their mobility is $1.6 \mathrm{~m}^{2} /(\mathrm{V} . \mathrm{s})$ then the resistivity of the semiconductor (since it is an n -type semiconductor contribution of holes is ignored) is close
1) $2 \Omega \mathrm{~m}$
2) $0.4 \Omega \mathrm{~m}$
3) $4 \Omega \mathrm{~m}$
4) $0.2 \Omega \mathrm{~m}$
12. 2; For image to form at object itself, says must retrace their path back to object. Hence must incident on mirror normally.
Case 1: Object will be at focus of lens
$\frac{1}{f}=(\mu-1)\left(\frac{1}{R}-\frac{1}{-R}\right)=\frac{1}{-18}$
$\Rightarrow \mathrm{R}=18 \mathrm{~cm}$
Case2 : Retraction at $1^{\text {st }}$ surface:
$\frac{1}{-27}-\frac{1.5}{V_{1}}=\frac{1-1.5}{R} \ldots(i)$
$2^{\text {nd }}$ retraction
$\frac{1.5}{V_{1}}-\frac{\mu}{\infty}=\frac{1.5-u}{-R} \ldots . .(i i)$
From (i), (ii)
$\mu=\frac{4}{3}$
13. 2; $j=\sigma E=n e v_{d}$
$\sigma=n e \frac{v_{d}}{E}=n e \mu$
$\frac{1}{\sigma}=\sigma=\frac{1}{n_{e} e \mu_{e}}$
$=\frac{1}{10^{19} \times 1.6 \times 10^{-19} \times 1.6}=0.4 \Omega \mathrm{~m}$
