

The lengths of tangents drawn from an external..

KMV Mohankumar Subject expert ZPHS Pachikapallam,

Chittoor.

1 MARK QUESTIONS

- 1. Find the centroid of the triangle whose vertices are (0,3), (3,0)and (0,0)?
- A. Centroid of the triangle is

$$\left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{3}\right)$$

$$\left(\frac{0+3+0}{3}, \frac{3+0+0}{3}\right)$$

$$\Rightarrow \left(\frac{3}{3}, \frac{3}{3}\right) = (1, 1)$$

- 2. Write two examples of similar pictures similar and non pictures?
- A. Similar pictures Non similar pictures
 - 1. All circles 1. Square and Rectangle
 - 2. All squares 2. Rectangle and Paralellogram
- 3. In the adjacent picture Find the length of tangent?

- **A.** We know that pythogoras Hypotenuse square = sum of squares of other two sides $\therefore OP^2 = OT^2 + PT^2$
 - \Rightarrow PT²= OP²- OT² $=(15)^2-(9)^2$
 - =225-81=144
 - $PT = \sqrt{144} = 12 \text{ cm}$

- :. Length of the tangent is 12cm. 4. If $\sin A = \cos A$ then find the
- Value of A? **A.** Sin A = Cos A
- Divide Cos A both sides $\frac{\text{SinA}}{\text{CosA}} = \frac{\text{CosA}}{\text{CosA}} \Rightarrow \text{Tan A} = 1$

Tan A = Tan 45° (:: tan 45=1) $\therefore A = 45^{\circ}$

- 5. Express $\sin 81^{\circ} + \tan 81^{\circ}$ in terms of trigonometric ratios of angle between 0°& 45°?
- **A.** Sin 81 + Tan 81 = Sin (90-9) + tan(90-9)= $\cos 9^{\circ} + \cot 9^{\circ} (\because \sin (90-\theta))$ $= \cos \theta$

- **6.** If it is given that in a group of 3 students, the probability of 2 students not having the same birthday is 0.992. What is the probability of 2 students have the same birthday?
- **A.** We know the formula

$$P(E)+P(\overline{E})=1$$

Given that $P(\overline{E}) = 0.992$

 \therefore P(E)= Probability of same birthday

$$P(E)=1-P(E)$$

 $\Rightarrow 1-0.992 = 0.118$

- 7. The arithemetic mean of 6, 10, xand 12 is 8. Then find the value of x?
- **A.** We know that mean = Sum of observations No.of observations

$$8 = \frac{6+10+x+12}{4} \implies 32 = 28+x$$

$$x = 32 - 28 = 4$$

$$\therefore x = 4$$

- **8.** The top of a clock tower is observed at angle of elevation of α° and the foot of the tower is at the distance of d meters from the observer. Draw the diagram for the data.
- A. BC = Tower of clock

2 MARKS QUESTIONS

1. In \triangle ABC, DE//BC, AD=x, DB= x-2, AE=x+2 and Ec = x -1. Find the value of x.

A. Given that,

In $\triangle ABC$ DE//BC and DB = x-2, AD = xAE = x + 2 and EC = x - 1We know that the Basic Proportional theorem.

$$\frac{AE}{EC} = \frac{AD}{DB}$$

$$\Rightarrow \frac{x+2}{x-1} = \frac{x}{x-2}$$

$$= (x+2)(x-2) = x(x-1)$$

$$= x^2-4 = x^2-x$$

$$= x = 4$$

- $\tan (90-\theta) = \cot \theta$ 2. If A, B and C are interior angles of a triangle ABC then show that $\operatorname{Tan}\left(\frac{B+C}{2}\right) = \cot\frac{A}{2}$
 - **A.** We know that sum of interior angles of triangle is 180° $\therefore \angle A + \angle B + \angle C = 180^{\circ}$ $\angle B + \angle C = 180 - \angle A$ divide 2 on both sides
 - $\frac{B+C}{2} = 90 \frac{A}{2}$,

apply tan on both sides

$$\tan\left(\frac{B+C}{2}\right) = \tan\left(90 - \frac{A}{2}\right)$$
$$\tan\left(\frac{B+C}{2}\right) = \cot\frac{A}{2}$$

Write the formula of Median for a grouped data and explain each term.

A. Median =
$$l + \left[\frac{\frac{N}{2} - CF}{f} \right] h$$

where l = lower boundary ofMedian class

n = No of observations

cf = cumulative frequency of class preceeding the median class

f = frequency of Median class h = class size

- **4.** Prove that the lengths of tangents drawn from an external point to a circle are equal.
- A. Given: A circle with centre 'o' P is a point (External point) and PA and PB are two tangents.

R.T.P: PA = PB

Construction: Join \overline{PO} and \overline{OA} and \overline{OB} Proof: In triangles OAP and OBP \angle OAP = \angle OBP = 90 (Radii & tangent) $\overline{OA} = \overline{OB}$ (same radii) OP = OP (common angle) By R.H.S congruency $\Delta OAP \cong \Delta OBP$ By CPCT, PA = PB.

- 5. Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$
- **A.** L.H.S given that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$

Rationalise the denominator $1-\sin\theta$ $1-Sin\theta$ $= \sqrt{1 + \sin\theta} \quad \sqrt{1 - \sin\theta}$

$$=\sqrt{\frac{(1-\sin\theta)^2}{1-\sin^2\theta}} \quad \Rightarrow \frac{\sqrt{(1-\sin\theta)^2}}{\sqrt{\cos^2\theta}}$$

 $=\frac{1-\sin\theta}{\cos\theta}=\frac{1}{\cos\theta}-\frac{\sin\theta}{\cos\theta}$ $Cosec\theta$ -tan θ = R.H.S

 $\therefore \sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} = \cos \theta - \tan \theta$

- **6.** Find the value of K for which the points A(1,2), B(-1,k), C(-3,-4)are collinear.
- **A.** We know that if the given three points are collinear then area of the corresponding triangle is O. \therefore Ar \triangle ABC is O;

given points (1,2,)(-1,k,)(-3,-4,)

Area of the triangle =
$$\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1)|$$

 $+x_3(y_1-y_2)$

$$\therefore \frac{1}{2} | x_1 (y_2 - y_3) + x_2 (y_3 - y_1)$$

$$+x_3(y_1-y_2)=0$$

$$1(K+4)-1(-4-2)-3(2-K)=0$$

$$|K+4+6-6+3K| = 0$$

4K+4=0K = -1

- 7. If two dice thrown, then what is probability of
 - (i) atleast one 5 come up (ii) 5 will not come up?
- **A.** If two dice are thrown then total possible out comes are =36 \therefore n(s) =36

Sample space of at least one five=

$$\{(1,5),(2,5),(3,5),(4,5),(5,5),$$

(6,5),(5,1)(5,2),(5,3),(5,4),(5,6)

- : Favourable out comes of at least one five =11
- \therefore n(E) =11

We know that P(E) =

Favourable out comes $_n (E)$ Total possible out comes n(S)

(i) P (atleast one 5 come up) = 11/36

(ii) P (Not a 5 come up) = P(E)

We know that the formula

 $P(A) = P(\overline{E}) = 1$

$$\Rightarrow P(5) + P(5) = 1$$

 $\therefore P(5) = 1 - P(5)$

$$\Rightarrow 1 - \frac{11}{1} = \frac{36 - 11}{1}$$

$$\therefore P(5) = \frac{25}{36}$$

8. Read the picture carefully and Answer the following questions.

- (i) What is angle of the elevation?
- (ii) What is the angle of depression?
- (iii) What is angle A (\angle A)
- (iv) DC represents
- **A.** (i) Angle of Elevation is $=45^{\circ}$
 - (ii) Angle of depression = 30° (iii) $\angle A = 30^{\circ}$
 - (iv) BC represents height of the house

- **Study Material**
- **Previous Papers**

ನಾತ್ವ

SAKSHI EDUCATION

Visit: www.sakshieducation.com