# The lengths of tangents drawn from an external.. 



## 1 MARK QUESTIONS

1. Find the centroid of the triangle whose vertices are $(0,3),(3,0)$ and $(0,0)$ ?
A. Centroid of the triangle is
$\left(\frac{x_{1}+x_{2}+x_{2}, y_{1}+y_{2}+y_{y}}{3}\right)$
$\left(\frac{0+3+0}{3}, \frac{3+0+0}{3}\right)$
$\Rightarrow\left(\frac{3}{3}, \frac{3}{3}\right)=(1,1)$
2. Write two examples of similar pictures and non similar pictures?
A. Similar pictures Non similar pictures
3. All circles 1. Square and Rectangle
4. All squares 2. Rectangle and Paralellogram
5. In the adjacent picture Find the length of tangent?

A. We know that pythogoras Hypotenuse square $=$ sum of squares of other two sides
$\therefore \mathrm{OP}^{2}=\mathrm{OT}^{2}+\mathrm{PT}^{2}$
$\Rightarrow \mathrm{PT}^{2}=\mathrm{OP}^{2}-\mathrm{OT}^{2}$
$=(15)^{2}-(9)^{2}$
$=225-81=144$
$\mathrm{PT}=\sqrt{ } 144=12 \mathrm{~cm}$
$\therefore$ Length of the tangent is 12 cm .
6. If $\sin A=\cos A$ then find the Value of A?
A. $\operatorname{Sin} \mathrm{A}=\operatorname{Cos} \mathrm{A}$

Divide Cos A both sides
$\frac{\operatorname{Sin} \mathrm{A}}{\operatorname{Cos} \mathrm{A}}=\frac{\operatorname{Cos} \mathrm{A}}{\operatorname{Cos} \mathrm{A}} \Rightarrow \operatorname{Tan} \mathrm{A}=1$
$\operatorname{Tan} \mathrm{A}=\operatorname{Tan} 45^{\circ}(\because \tan 45=1)$ $\therefore A=45^{\circ}$
5. Express $\sin 81^{\circ}+\tan 81^{\circ}$ in terms of trigonometric ratios of angle between $0^{\circ} \& 45^{\circ}$ ?
A. $\operatorname{Sin} 81+\operatorname{Tan} 81$
$=\operatorname{Sin}(90-9)+\tan (90-9)$
$=\operatorname{Cos} 9^{\circ}+\operatorname{Cot} 9^{\circ}(\because \operatorname{Sin}(90-\theta)$ $=\cos \theta$
$\tan (90-\theta)=\cot \theta)$
6. If it is given that in a group of 3 students, the probability of 2 students not having the same birthday is 0.992 . What is the probability of 2 students have the same birthday?
A. We know the formula
$P(E)+P(\bar{E})=1$
Given that $\mathrm{P}(\overline{\mathrm{E}})=0.992$
$\therefore \mathrm{P}(\mathrm{E})=$ Probability of same birthday
$\mathrm{P}(\mathrm{E})=1-\mathrm{P}(\mathrm{E})$
$\Rightarrow 1-0.992=0.118$
7. The arithemetic mean of $6,10, x$ and 12 is 8 . Then find the value of $x$ ?
A. We know that mean $=$ Sum of observations
No.of observations

$$
\begin{aligned}
& 8=\frac{6+10+x+12}{4} \Rightarrow 32=28+x \\
& x=32-28=4
\end{aligned}
$$

$$
\therefore x=4
$$

8. The top of a clock tower is observed at angle of elevation of $\alpha^{\circ}$ and the foot of the tower is at the distance of $d$ meters from the observer. Draw the diagram for the data.
A. $\mathrm{BC}=$ Tower of clock
$\mathrm{A}=$ observation point


## 2 MARKS QUESTIONS

1. In $\Delta \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}, \mathrm{AD}=x, \mathrm{DB}=$ $x-2, \mathrm{AE}=x+2$ and $\mathrm{Ec}=x-1$. Find the value of $x$.

A. Given that,


In $\triangle \mathrm{ABC}$
$\mathrm{DE} / / \mathrm{BC}$ and $\mathrm{DB}=x-2, \mathrm{AD}=x$
$\mathrm{AE}=x+2$ and $\mathrm{EC}=x-1$
We know that the Basic
Proportional theorem.
$\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\Rightarrow \frac{x+2}{x-1}=\frac{x}{x-2}$
$=(\mathrm{x}+2)(\mathrm{x}-2)=x(x-1)$
$=x^{2}-4=x^{2}-x$
$=x=4$
2. If $A, B$ and $C$ are interior angles of a triangle ABC then show that $\operatorname{Tan}\left(\frac{B+C}{2}\right)=\cot \frac{A}{2}$
A. We know that sum of interior angles of triangle is $180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{B}+\angle \mathrm{C}=180-\angle \mathrm{A}$
divide 2 on both sides
$\frac{\mathrm{B}+\mathrm{C}}{2}=90-\frac{\mathrm{A}}{2}$,
apply tan on both sides

3. Write the formula of Median for a grouped data and explain each term.
A. Median $=l+\left[\frac{\frac{\mathrm{N}}{2}-\mathrm{CF}}{\mathrm{f}}\right] \mathrm{h}$
where $l=$ lower boundary of Median class
$\mathrm{n}=$ No of observations
cf = cumulative frequency of class preceeding the median class
$\mathrm{f}=$ frequency of Median class $\mathrm{h}=$ class size
4. Prove that the lengths of tangents drawn from an external point to a circle are equal.
A. Given: A circle with centre 'o' P is a point (External point) and PA and PB are two tangents.

R.T.P: $\mathrm{PA}=\mathrm{PB}$

Construction: Join
$\overline{\mathrm{PO}}$ and $\overline{\mathrm{OA}}$ and $\overline{\mathrm{OB}}$
Proof: In triangles OAP and OBP
$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90($ Radii $\&$ tangent)
$\overline{\mathrm{OA}}=\overline{\mathrm{OB}}$ (same radii) $\mathrm{OP}=\mathrm{OP}$ (common angle) By R.H.S congruency $\Delta \mathrm{OAP} \cong \triangle \mathrm{OBP}$
By CPCT , PA = PB.
5. Prove that $\sqrt{\frac{1-\operatorname{Sin} \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$
A. L.H.S given that $\sqrt{\frac{1-\operatorname{Sin} \theta}{1+\operatorname{Sin} \theta}}$ Rationalise the denominator $=\sqrt{\frac{1-\operatorname{Sin} \theta}{1-\operatorname{Sin} \theta}} \times \sqrt{\frac{1-\operatorname{Sin} \theta}{1-\operatorname{Sin} \theta}}$
$=\sqrt{\frac{(1-\operatorname{Sin} \theta)^{2}}{1-\operatorname{Sin}^{2} \theta}} \Rightarrow \frac{\sqrt{(1-\sin \theta)^{2}}}{\sqrt{\cos ^{2} \theta}}$
$=\frac{1-\operatorname{Sin} \theta}{\operatorname{Cos} \theta}=\frac{1}{\operatorname{Cos} \theta}-\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}$
$\operatorname{Cosec} \theta-\tan \theta=$ R.H.S


## $\therefore \sqrt{\frac{1-\operatorname{Sin} \theta}{1+\operatorname{Sin} \theta}}=\operatorname{Cosec} \theta-\tan \theta$

6. Find the value of K for which the points $\mathrm{A}(1,2), \mathrm{B}(-1, \mathrm{k}), \mathrm{C}(-3,-4)$ are collinear.
A. We know that if the given three points are collinear then area of the corresponding triangle is O . $\therefore \mathrm{Ar} \triangle \mathrm{ABC}$ is O ;
given points
$(1,2),(-1, k),(-3,-4$,
Area of the triangle $=$
$\left.\frac{1}{2} \right\rvert\, x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)$
$+x_{3}\left(y_{1}-y_{2}\right)$
$\therefore \frac{1}{2} \mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)$
$+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=0$
$\mid 1(K+4)-1(-4-2)-3(2-K)=0$
$|\mathrm{K}+4+6-6+3 \mathrm{~K}|=0$
$4 \mathrm{~K}+4=0$
$\mathrm{K}=-1$
7. If two dice thrown, then what is probability of
(i) atleast one 5 come up
(ii) 5 will not come up?
A. If two dice are thrown then total possible out comes are $=36$ $\therefore \mathrm{n}(\mathrm{s})=36$
Sample space of at least one five=
$\{(1,5),(2,5),(3,5),(4,5),(5,5)$,
$(6,5),(5,1)(5,2),(5,3),(5,4),(5,6)\}$
$\therefore$ Favourable out comes of at
least one five $=11$
$\therefore \mathrm{n}(\mathrm{E})=11$

We know that $\mathrm{P}(\mathrm{E})=$
Favourable out comes $=n(E)$
Totalpossibleoutcomes $=\frac{n(S)}{n(S)}$
(i) P ( atleast one 5 come up) $=11 / 36$
(ii) $\mathrm{P}($ Not a 5 come up $)=$ P(E)
We know that the formula
$P(A)=P(E)=1$
$\Rightarrow \mathrm{P}(5)+\mathrm{P}(5)=1$
$\therefore \mathrm{P}(5)=1-\mathrm{P}(5)$
$\Rightarrow 1-\frac{11}{36}=\frac{36-11}{36}$
$\therefore \mathrm{P}(5)=\frac{25}{36}$
8. Read the picture carefully and Answer the following questions. Horizontal line

(i) What is the angle of elevation?
(ii) What is the angle of depression?
(iii) What is angle $\mathrm{A}(\angle \mathrm{A})$
(iv) DC represents
A. (i) Angle of Elevation is $=45^{\circ}$
(ii) Angle of depression $=30^{\circ}$
(iii) $\angle \mathrm{A}=30^{\circ}$
(iv) BC represents height of the house

AP \& TS 10th Class - EM \& TM
సoక్ష



- Study Material
- Model papers
- Previous Papers

