అమరావతి | శనివారం | డిసెంబర్ | 7 | 2019

Send your Feedback to vidya@sakshi.com

What are Quantum numbers?

Subject Expert Leo Academy, Hyderabad.

T. Krishna

- **Atomic Structure**
- Total number of protons = Atomic number (Z)
- Total number of neutrons n = (A-Z)
- Total number of electrons
 Case-1: for neutral atom e = Z
 Case-2: for cation e =
 Z positive charge
 Case-3: for anion e =
 - Z + positive charge \bullet
- $\upsilon = \frac{c}{\lambda}$; $\upsilon =$ frequency, c = velocity of light, $\lambda =$ wavelength.
- Wave number, $v = \frac{1}{\lambda}$
- Quantum energy, $E = h\upsilon = \frac{hc}{\lambda} = hc\upsilon^{-1}$
 - where, h = Planck's constant= 6.626 × 10⁻³⁴ J sec.
- 1 Einstein (Ei) = Energy of ONE MOLE quanta = $Nhv = Nh\frac{c}{\lambda}$
 - where, $N = 6.023 \times 10^{23}$
- Photoelectric Effect: $hv = hv_0 + KE$

- $\omega = \text{Angular velocity} = \frac{\upsilon}{r}$ where,
- υ = Linear velocity. • Radius of nth orbit r = $\frac{n^2 h^2}{4\pi^2 m K Z e^2}$; r_n = 0.529 $\frac{n^2}{7}$ Å
- Velocity of an electron in nth orbit = $\frac{2\pi Z e^2 K}{nh}$; v_n = 2.18 10⁶ $\frac{Z}{n}$ m/sec
- Time period of an electron in its orbit $T = \frac{2\pi r}{v}$, where v = velocity
 - of electron in nth orbit
- Frequency of an electron in its orbit = $\frac{v}{2\pi r}$; r = radius of electron in nth orbit
- Potential energy of electron in a shell = $-\frac{27.2}{n^2}$ Z²eV
- Kinetic energy of electron in a shell = $+13.6 \frac{Z^2}{n^2} eV$

K.E. =
$$\frac{KZe^2}{2r}$$
, P.E. = $-\frac{KZe^2}{r}$, T.E. = $-\frac{KZe^2}{2r}$

- Kinetic energy of electron = $-\frac{1}{2} \times Potential energy$
- Total energy = K.E.;

• Total energy =
$$-13.6 \frac{-}{n^2}$$
 eV per

atom,
$$E_n = -1312 \frac{Z}{n^2} \text{ K J/mol}$$

- Shortest wavelength spectral line of the series $= \lambda_{\infty} \left[\frac{n_1^2}{R} \right] x \frac{1}{z^2}$
- Longest wavelength spectral line of the series $2 + 1 \left[(n_1+1)^2 x n_1^2 \right] = 1$

$$\lambda_{\text{long}} = \lambda_{\text{first}} = \frac{1}{R} \left[\frac{(n_1 + 1)^2 + n_1^2}{(n_1 + 1)^2 - n_1^2} \right] x_{z^2}^1$$

- Number of photons emitted = $\frac{\Delta n (\Delta n + 1)}{2}$,
 - $\frac{2}{2}$

where $\Delta n = n_2 - n_1$ n_1 , n_2 are orbit numbers lower and higher respectively.

- In case of single isolated atom if electron make transition from nth state to the ground state then maximum number of spectral lines observed = (n-1)
- Wavelength of a particle moving

atom: $\frac{d^{2}\psi}{dx^{2}} + \frac{d^{2}\psi}{dy^{2}} + \frac{d^{2}\psi}{dz^{2}} + \frac{8\pi^{2}m}{h^{2}}(E - V)\psi = 0$

Significance of Quantum numbers

- 1. Principal quantum number Symbol: n; Allowed values: 1, 2, 3, 4 Significance: Size and energy of orbit 2. Azimuthal quantum number Symbol: *l* Allowed values: 0, 1, 2, ...(n–1) Significance: Shape of the orbital **3.** Magnetic quantum number Symbol: m Allowed values: $-1, \dots 0, \dots +1$ Significance: Orientation of orbitals in space 4. Spin quantum number Symbol: s; Allowed values: $+\frac{1}{2}, -\frac{1}{2}$ Significance: Spin of the electron • For a given value of n = 3 n *l* subshell orbital 3 0 S S p_x, p_y, p_z р
 - $\begin{array}{c} P \qquad P_{X}, P_{Y}, P_{Z} \\ d \qquad d_{xy}, d_{yz}, d_{xz}, d_{x^{2}-y^{2}}, d_{z^{2}} \end{array}$
- Maximum electrons in a shell = 2n² (not more than 32)

2

- Maximum number of orbitals in a shell = n²
- Maximum number of subshells in a shell = n

rical nodes = (n - l - 1)

- * Number of nodal planes or angular nodes = l
- Total number of nodes = (n-l) excluding node at infinite distance.
- **Energy of Orbitals:** Energy of electrons in hydrogen atom depends solely on principal quantum number.

1s < 2s = 2p < 3s = 3p = 3d < 4s= 4p = 4d = 4f and so on.

In elements other than hydrogen, orbitals follow following sequence of energy

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f ...

- Half filled and fully filled subshells have extra stability due to greater exchange energy and spherical symmetry around the nucleus.
- * Exchange energy $\Delta E = N \times K$ N = Number of exchanges possible
 - $=\frac{1}{2}\frac{n!}{(n-2)!}$

where, n = number of electrons having parallel spin.

IPE - Long Answer Questions

1. Write the postulates of Bohr's theory of hydrogen atom? Discuss the importance of this mod-

Angular momentum $L = mvr = n \frac{h}{2\pi}$ Angular momentum = I ω $= mr^2 \frac{v}{r} = mvr$, where I = Moment of inertia = mr ² ;			Wave number of spectral lines in hydrogen like atoms $=\frac{1}{\lambda} = v = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$ $R = 109677 \text{ cm}^{-1} = \frac{13.6\text{eV}}{\text{hc}};$		•	with a velocity v is $\lambda = \frac{\pi}{p} = \frac{\pi}{mv}$ Wavelength of an electron accelerated with a potential of V is: $\lambda = \frac{h}{\sqrt{2meV}} = \frac{h}{\sqrt{2m(K.E.)}}$ For an electron	•	Number of orbitals in a subshell = $2l + 1$ Maximum number of electrons in particular subshell = $2 \times (2l + 1)$ Orbital angular momentum L = $L = \sqrt{l(l+1)} \frac{h}{2\pi}; L = \sqrt{l(l+1)} \hbar$	 el to explain various series of line spectra in hydrogen atom. 2. How are the quantum numbers n, <i>l</i> and m_l arrived? and explain the significance of quantum numbers. 3. a) Explain photo electric
Spectral Series	n ₁	n ₂	Region	Wavelength		$\lambda = \left(\frac{150}{V}\right)^2 \text{ Å} = \frac{12.24}{\sqrt{V}} \text{ Å}[V \text{ in volts}]$		$\left[\operatorname{dirac} \hbar = \frac{h}{2\pi}\right]$	effect? b) When electromagnetic radiati-
i) Lyman Series	1	2, 3, 4	UV	$\lambda = \frac{1}{R} \left \frac{n_2^2}{n_2^2 - 1} \right x_{\frac{1}{z^2}}$	٠	Circumference of Bohr orbit is		for s orbital $L = 0$, p orbital	on of wavelength 300 nm falls on
ii) Balmer Series	2	3, 4	Visible	$\lambda = \frac{1}{R} \left[\frac{4n_2^2}{n_2^2 - 4} \right] x_{\frac{1}{z^2}}$	•	equal to the integral multiple of de Broglie wavelength i.e., $2\pi r = n\lambda$. Heisenberg's Uncertainty Prin-	*	$L = \sqrt{2} \frac{h}{2\pi}$, d orbital $L = \sqrt{6} \frac{h}{2\pi}$ Total spin = Number of unpaired electrons $\times \frac{1}{2}$	the surface of sodium, electrons are emitted with a kinetic energy of 1.68×10 ⁵ J mol ⁻¹ . What is the minimum energy needed to rem-
iii) Paschen Series	3	4, 5, 6	IR	$\lambda = \frac{1}{R} \left[\frac{9n_2^2}{n_2^2 - 9} \right] x_{\frac{1}{z^2}}$		ciple: $\Delta x.\Delta p$ or $x.(mv) \ge \frac{h}{4\pi}$ or h	*	Spin multiplicity = $[2\Sigma s+1]$ Spin angular momentum	ove an electron from sodium? What is the maximum wavelength that will cause a
iv) Brackett Series	4	5, 6, 7	IR	$\lambda = \frac{1}{R} \left[\frac{16n_2^2}{n_2^2 - 16} \right] x_{\frac{1}{z^2}}^{-1}$	٠	$\Delta x.(m \Delta v) \ge \frac{1}{4\pi}$ Wave Mechanical model of	*	= $\sqrt{s(s+1)\frac{1}{2\pi}}$ where, $s = +\frac{1}{2}$ Number of radial nodes or sphe-	photoelectron to be emitted?
v) Pfund Series	5	6, 7,	IR	$\lambda = \frac{1}{R} \left[\frac{25n_2^2}{n_2^2 - 25} \right] x_{\frac{1}{z^2}}$	1.	EAMCET Questions The energy of an electron in the		1) $- 5.45 \times 10^{-19} \text{ J}$ 2) $- 1.84 \times 10^{-29} \text{ J}$ 3) $- 1.36 \times 10^{-19} \text{ J}$	correct 5. The element with the electronic configuration 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
vi) Humphrey Series	6	7, 8	far IR	$\lambda = \frac{1}{R} \left[\frac{36n_2^2}{n_2^2 - 36} \right] x_{\frac{1}{z^2}}$		3rd orbit of H-atom(in J) is approximately? 1) -2.18×10^{-18}	4.	4) 1.84×10^{-29} J Assertion (A): Atoms with com- pletely filled and half filled sub-	$\begin{array}{cccc} 3d^{10} 4s^{1} 1s? \\ 1) Cu & 2) Ca \\ 3) Cr & 4) Co \end{array}$
JEE Questions spherical shell of infinitesmal thic- kness, dr, at a distance r from nu- cleus. The volume of this shell is					2.	2) -2.42×10^{-19} 3) -1.21×10^{-19} 4) -3.63×10^{-19} The wavelenth(in m) of a		shells are stable. Reason (R): Completely filled and half filled subshells have symmetrical distribution of ele-	6. Observe the following table? Metal Li Na K Mg Cu Ag
1. A stream of electrons from a heated filment was passed between two charged plates kept at a pote-					2.	particle of mass 11.043×10^{-26} kg moving with a velocity of 6.0×10^{-7} ms ⁻¹		ctrons and have maximum exch- ange energy. The correct answer is:	Work function/eV 2.42 2.3 2.25 3.7 4.8 4.3 Which are the elements capable
ntial difference V esu. If e and m are charge and mass of an electron respectively, then the value of h/λ			a) $4\pi r^2 R^2 \rightarrow (q)$ (q) (a) $4\pi r^2 R^2 \rightarrow (q)$			1) 1.0×10^{16} 2) 6.0×10^{-16} 3) 1.0×10^{-16}		 (A) and (R) are correct, (R) is the correct explanation of (A) (A) and (R) are correct, (R) is 	of exhibiting photoelectric effect with 295 nm radiation? 1) Li, Na, K and Mg
is given by: a) $\sqrt{2meV}$ b) \sqrt{meV} c) $2meV$ d) meV			$(c) \qquad \begin{array}{c} 4\pi^2 R^2 \\ 4\pi^2 R^2 \\ \downarrow \end{array} \qquad (c) \qquad \begin{array}{c} 4\pi^2 R^2 \\ \downarrow \\ $		3.	4) 6.0×10^{16} Using Bohr's equation for the energy levels of the electron in		not the correct explanation of (A) 3) (A) is correct, but (R) is not	 2) K, Mg, Cu and Mg 3) Na, K, Mg and Cu 4) None
2. P is the probability of finding the 1s electron of hydrogen atom in a			Answers: 1) a 2) a			hydrogen atom, determine the energy of an electron in $n = 4$.		correct 4) (A) is not correct, but (R) is	1) 2 2) 3 3) 3 4) 1 5) 1 6) 1
							(1)		/ / -/ -

