
CHAPTER – 12 

ATOMS 

Q 12.1 Choose the correct alternative from the clues given at the end of the each statement: 

a) The size of the atom in Thomson’s model is .......... the atomic size in Rutherford’s model. 

(much greater than/no different from/much less than.) 

b) In the ground state of .......... electrons are in stable equilibrium, while in .......... electrons 

always experience a net force. (Thomson’s model/ Rutherford’s model.) 

c) A classical atom based on .......... is doomed to collapse. (Thomson’s model/ Rutherford’s 

model.) 

d) An atom has a nearly continuous mass distribution in a .......... but has a highly non-uniform 

mass distribution in .......... (Thomson’s model/Rutherford’s model.) 

e) The positively charged part of the atom possesses most of the mass in .......... (Rutherford’s 

model/both the models.)   

Answer: 

a) The size of the atom in Thomson’s model is no different from the atomic size in Rutherford’s 

model. 

b) In the ground state of Thomson’s model electrons are in stable equilibrium, while in 

Rutherford’s model electrons always experience a net force. 

c) A classical atom based on Rutherford’s model is doomed to collapse. 

d) An atom has a nearly continuous mass distribution in a Thomson’s model but has a highly 

non-uniform mass distribution in Rutherford’s model. 

e) The positively charged part of the atom possesses most of the mass in both the models. 

Q 12.2 Suppose you are given a chance to repeat the alpha-particle scattering experiment using a 

thin sheet of solid hydrogen in place of the gold foil.  (Hydrogen is a solid at temperatures below 

14 K.) What results do you expect? 

Answer: 

On repeating the alpha-particle scattering experiment using a thin sheet of solid hydrogen in 

place of the gold foil we would have different observations than Rutherford, as the alpha 

particles won't be scattered much because of being heavier than the nucleus of the Hydrogen 

atom. Therefore we would not be able to confirm the presence of almost the entire mass of the 

atom at its centre. 

Q 12.3 What is the shortest wavelength present in the Paschen series of spectral lines? 

Answer: 

The Rydberg's formula for the hydrogen atom is 



1

𝜆
= 𝑅 [

1

𝑛1
2 −

1

𝑛2
2] 

Where R is Rydberg constant for the Hydrogen atom and equals to 1.1×107 m-1 

For shortest wavelength in Paschen Series n1=2 and n2= ∞  

1

𝜆
= 1.1 × 107 [

1

32
−

1

∞2
] 

𝜆 = 8.18 × 10−7𝑚 

The shortest wavelength in Paschen Series is therefore 818 nm. 

Q 12.4  A difference of 2.3 eV separates two energy levels in an atom. What is the frequency of 

radiation emitted when the atom make a transition from the upper level to the lower level? 

Answer: 

Frequency of radiation consisting of photons of energy E is given by 

 𝑣 =
𝐸

ℎ
 

E=2.3 eV 

Plank's constant(h)=6.62×10-34 Js 

𝑣 =
2.3 × 1.6 × 10−19

6.62 × 10−34
 

𝑣 = 5.55 × 1014 𝐻𝑧 

Q 12.5 The ground state energy of hydrogen atom is –13.6 eV. What are the kinetic and potential 

energies of the electron in this state? 

Answer: 

The ground state energy E=-13.6 eV. 

The kinetic energy= -E=13.6 eV 

Also ground state energy = Kinetic energy+Potential energy 

E=K+U 

U=E-K 

U=-13.6-13.6 

U=-27.2 eV 

The kinetic and potential energies are 13.6 eV and -27.2 eV respectively. 

Q 12.6 A hydrogen atom initially in the ground level absorbs a photon, which excites it to the n 

= 4 level. Determine the wavelength and frequency of photon. 

Answer: 



The initial energy of the electron is E1 

𝐸1 =  −
13.6

12
 

E1 =-13.6 eV 

The energy of the electron when it is excited to level n=4 is E2 

𝐸2 =  −
13.6

42
 

E2=-0.85 eV 

The difference between these two energy levels is equal to the energy of the photon absorbed by 

the electron. 

The energy of the photon ΔE = E2 - E1 

ΔE = -0.85 -(-13.6) 

ΔE = 12.75 eV 

The wavelength of the photon can be calculated using relation 

𝛥𝐸 =
ℎ𝑐

𝜆
 

hc=1240 eV 

𝜆 =
ℎ𝑐

𝛥𝐸
 

𝜆 =
1240

12.57
 

𝜆 = 98.6 

𝑣 =
𝑐

𝜆
 

𝑣 =
3 × 108

98.6 × 10−9
 

𝑣 = 3.04 × 1015𝐻𝑧 

The wavelength and frequency of the photon absorbed by the hydrogen atom are 98.6 nm and 

3.04×1015 Hz respectively. 

Q 12.7 (a) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the 

n = 1, 2, and 3 levels 

Answer: 

As per Bohr's model the angular momentum of electrons in each orbit is constant and a multiple 

of 
𝑛ℎ

2𝜋
 



𝑚𝑒𝑣𝑛𝑟𝑛 =
𝑛ℎ

2𝜋
           (i) 

The electrostatic force of attraction between the electron and the nucleus provides the required 

centripetal force for the circular motion of the electron. 

𝑚𝑣𝑛
2

𝑟𝑛
=

𝑒2

4𝜋𝜀0𝑟𝑛
2       (ii) 

Using equation (i) and (ii) we get 

𝑣𝑛 =
𝑒2

2𝑛ℎ𝜀0
 

𝑟𝑛 =
𝑛2ℎ2𝜀0

𝑚𝑒𝜋𝑒2
 

𝑟𝑛 =
𝑛2ℎ2𝜀0

𝑚𝑒𝜋𝑒2
 

𝑣1 =
𝑒2

2ℎ𝜀0
 

𝑣1 =
(1.6 × 10−19)2

2 × 6.62 × 10−34 × 8.85 × 10−12
 

v1=2.18×106 ms-1 

𝑣2 =
𝑒2

4ℎ𝜀0
 

𝑣1 =
(1.6 × 10−19)2

4 × 6.62 × 10−34 × 8.85 × 10−12
 

v2=1.09×106 ms-1 

𝑣3 =
𝑒2

6ℎ𝜀0
 

𝑣1 =
(1.6 × 10−19)2

6 × 6.62 × 10−34 × 8.85 × 10−12
 

v3=7.28×105 ms-1 

 Q 12.7 (b) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the 

n = 1, 2, and 3 levels 

 (b) calculate the orbital period in each of these levels. 

Answer: 

Orbital period (Tn ) is defined as time taken by the electron to complete one revolution around 

the nucleus and is given by 



𝑇𝑛 =
2𝜋𝑟𝑛

𝑣𝑛
 

𝑇𝑛 =
4𝑛3ℎ3𝜀0

2

𝑚𝑒𝑒4
 

𝑇1 =
4 × 13 × (6.62 × 10−34)2 × (8.85 × 10−12)2

9.1 × 10−31 × (1.6 × 10−19)4
 

T1=1.53×10-16 s 

𝑇2 =
4 × 23 × (6.62 × 10−34)2 × (8.85 × 10−12)2

9.1 × 10−31 × (1.6 × 10−19)4
 

T2=1.22×10-15 s 

𝑇3 =
4 × 33 × (6.62 × 10−34)2 × (8.85 × 10−12)2

9.1 × 1031 × (1.6 × 10−19)4
 

T3=4.12×10-15 s 

Q 12.8  The radius of the innermost electron orbit of a hydrogen atom is 5.3 × 10−11𝑚. What 

are the radii of the n = 2 and n =3 orbits? 

Answer: 

The radius of the orbit is proportional to the square of n. 

For n=2 the radius of the orbit is 

𝑟2 = 𝑟1 × 22 

= 5.3 × 10−11 × 4 

= 2.12 × 10−10 𝑚 

For n=3 the radius of the orbit is 

𝑟3 = 𝑟1 × 32 

= 5.3 × 10−11 × 9 

= 4.77 × 10−10𝑚 

Q 12.9  A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. 

What series of wavelengths will be emitted? 

Answer: 

Since the energy of the electron beam is 12.5 eV the Hydrogen atoms will get excited to all 

requiring energy equal to or less than 12.5 eV 

E1 =-13.6 eV 

E3 = -1.5 eV 

E3 -E1 = 12.1 eV 



E4= -0.85 eV 

E4-E1=12.75 eV 

Therefore the electron can reach maximum upto the level n=3. 

During de-excitations, the electron can jump directly from n=3 to n=1 or it can first jump from 

n=3 to n=2 and then from n=2 to n=1 

Therefore two wavelengths from the Lyman series and one from the Balmer series will be 

emitted 

To find the wavelengths emitted we will use the Rydberg's Formula 

1

𝜆
= 𝑅(

1

𝑛1
2 −

1

𝑛2
2)     where R is the Rydberg's constant and equals 1.097×107 m-1 

For n1=1 and n2=3 

1

𝜆
= 1.097 × 107 (

1

12
−

1

32
) 

Emitted wavelength is 102.5 nm 

For n1=1 and n2=2 

1

𝜆
= 1.097 × 107 (

1

12
−

1

22
) 

Emitted wavelength is 121.54 nm 

For n1=2 and n2=3 

1

𝜆
= 1.097 × 107 (

1

22
−

1

32
) 

Emitted wavelength is 656.3 nm 

Q 12.10  In accordance with the Bohr’s model, find the quantum number that characterises the 

earth’s revolution around the sun in an orbit of radius   1.5 × 1011𝑚  m with orbital speed 3 ×
104𝑚/𝑠  (Mass of earth = 6.0 × 1024 𝑘𝑔.) 

Answer: 

As per the Bohr's model, the angular of the Earth will be quantized and will be a multiple of 
ℎ

2𝜋
 

𝑚𝑣𝑟 =
𝑛ℎ

2𝜋
 

𝑛 =
2𝜋𝑚𝑣𝑟 

ℎ
 

𝑛 =
2𝜋 × 6 × 1024 × 3 × 104 × 1.5 × 1011

6.62 × 10−34
 

n = 2.56×1074 



Therefore the quantum number that characterises the earth’s revolution around the sun in an orbit 

of radius   1.5 × 1011𝑚 m with an orbital speed 3 × 104 𝑚/𝑠  

is 2.56×1074 

Q 12.11 (a) Answer the following questions, which help you understand the difference between 

Thomson’s model and Rutherford’s model better. 

  Is the average angle of deflection of α-particles by a thin gold foil predicted by Thomson’s 

model much less, about the same, or much greater than that predicted by Rutherford’s model? 

Answer: 

The average angle of deflection of α-particles by a thin gold foil predicted by both the models is 

about the same. 

Q 12.11 (b)  Answer the following questions, which help you understand the difference between 

Thomson’s model and Rutherford’s model better.  

  Is the probability of backward scattering (i.e., scattering of α-particles at angles greater than 

90°) predicted by Thomson’s model much less, about the same, or much greater than that 

predicted by Rutherford’s model? 

Answer: 

The probability of backward scattering predicted by Thomson’s model is much less than that 

predicted by Rutherford’s model. 

Q 12.11  (c)   Answer the following questions, which help you understand the difference 

between Thomson’s model and Rutherford’s model better. 

  Keeping other factors fixed, it is found experimentally that for small thickness t, the number of 

α-particles scattered at moderate angles is proportional to t. What clue does this linear 

dependence on t provide? 

Answer: 

Scattering at moderate angles requires head-on collision the probability of which increases with 

the number of target atoms in the path of α-particles which increases linearly with the thickness 

of the gold foil and therefore the linear dependence between the number of α-particles scattered 

at a moderate angle and the thickness t of the gold foil. 

Q 12.11 (d)  Answer the following questions, which help you understand the difference between 

Thomson’s model and Rutherford’s model better. 

 In which model is it completely wrong to ignore multiple scattering for the calculation of 

average angle of scattering of α-particles by a thin foil? 

Answer: 

It is completely wrong to ignore multiple scattering for the calculation of the average angle of 

scattering of α-particles by a thin foil in Thomson's model as the deflection caused by a single 

collision in this model is very small. 



Q 12.12  The gravitational attraction between electron and proton in a hydrogen atom is weaker 

than the coulomb attraction by a factor of about 10−40. An alternative way of looking at this fact 

is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were 

bound by gravitational attraction. You will find the answer interesting. 

Answer: 

As per the bohrs model 

 𝑚𝑒𝑣𝑛𝑟𝑛 =
𝑛ℎ

2𝜋
                        (i) 

If the proton and the electron were bound only by the gravity the gravitational force between 

them will provide the centripetal force required for circular motion 

𝑚𝑒𝑣𝑛
2

𝑟𝑛
                   (ii) 

From equation (i) and (ii) we can calculate that the radius of the ground state (for n=1) will be 

𝑟1 =
ℎ2

4𝜋𝐺𝑚𝑝𝑚𝑒
2
 

𝑟1 =
(6.62 × 10−34)2

4𝜋 × 6.67 × 10−11 × 1.67 × 10−27 × (9.1 × 10−31)2
 

𝑟1 ≈ 1.2 × 1029 𝑚 

The above value is larger in order than the diameter of the observable universe. This shows how 

much weak the gravitational forces of attraction as compared to electrostatic forces. 

Q 12.13 Obtain an expression for the frequency of radiation emitted when a hydrogen atom de-

excites from level n to level (n–1). For large n, show that this frequency equals the classical 

frequency of revolution of the electron in the orbit. 

Answer: 

Using Bohr's model we have. 

𝑣𝑛 =
𝑒2

2𝑛ℎ𝜀0
 

𝑟𝑛 =
𝑛2ℎ2𝜀0

𝑚𝑒𝜋𝑒2
 

𝐸𝑛 =
1

2
𝑚𝑣2

2 −
𝑒2

4𝜋𝜀0𝑟𝑛
2
 

𝐸𝑛 =  −
𝑚𝑒4

8𝑛2ℎ2𝜀0
2 

𝐸𝑛 − 𝐸𝑛−1 =
𝑚𝑒4

8𝑛2ℎ2𝜀0
2 —

𝑚𝑒4

8(𝑛 − 1)2ℎ2𝜀0
2 



𝐸𝑛 − 𝐸𝑛−1 = −
𝑚𝑒4

8ℎ2𝜀0
2 [

1

𝑛2
−

1

(𝑛 − 1)2
] 

𝐸𝑛 − 𝐸𝑛−1 =  −
𝑚𝑒4

8ℎ2𝜀0
2 [

−2𝑛 + 1 

𝑛2(𝑛 − 1)2
] 

Since n is very large 2n-1 can be taken as 2n and n-1 as n 

𝐸𝑛 − 𝐸𝑛−1 =
𝑚𝑒4

4𝑛3ℎ2𝜀0
2 

The frequency of the emission caused by de-excitation from n to n-1 would be 

𝑣 =
𝐸𝑛 − 𝐸𝑛−1

ℎ
 

𝑣 =
𝑚𝑒4

4𝑛3ℎ3𝜀0
2 

The classical frequency of revolution of the electron in the nth orbit is given by 

𝑣 =
𝑣𝑛

2𝜋𝑟𝑛
 

𝑣 =
𝑒2

2𝑛ℎ𝜀0
×

𝑚𝑒𝜋𝑒2

2𝜋𝑛2ℎ2𝜀0
 

𝑣 =
𝑚𝑒4

4𝑛3ℎ3𝜀0
2 

The above is the same as the frequency of the emission during de-excitation from n to n-1. 

Q 12.14 (a)  Classically, an electron can be in any orbit around the nucleus of an atom. Then 

what determines the typical atomic size? Why is an atom not,say,  thousand times bigger than its 

typical size? The question had greatly puzzled Bohr before he arrived at his famous model of the 

atom that you have learnt in the text. To simulate what he might well have done before his 

discovery, let us play as follows with the basic constants of nature and see if we can get a 

quantity with the dimensions of length that is roughly equal to the known size of an atom (≈
10−10𝑚). 

(a)    construct a quantity with the dimensions of length from the fundamental constants e, me, 

and c. Determine its numerical value. 

Answer: 

Using dimensional analysis we can see that the quantity to be constructed and consisting of me, e 

and c will also have 𝜀0 and will be equal to 

𝑒2

𝜀0𝑚𝑒𝑐2 and has numerical value 3.5×10-14 which is much smaller than the order of atomic radii. 

Q 12.14 (b)  Classically, an electron can be in any orbit around the nucleus of an atom. Then 

what determines the typical atomic size? Why is an atom not,   say, thousand times bigger than 



its typical size? The question had greatly puzzled Bohr before he arrived at his famous model of 

the atom that you have learnt in the text. To simulate what he might well have done before his 

discovery, let us play as follows with the basic constants of nature and see if we can get a 

quantity with the dimensions of length that is roughly equal to the known size of an atom (≈
10−10𝑚).  

   (b)  You will find that the length obtained in (a) is many orders of magnitude smaller than the 

atomic dimensions. Further, it involves c. But energies of atoms are mostly in non-relativistic 

domain where c is not expected to play any role. This is what may have suggested Bohr to 

discard c and look for ‘something else’ to get the right atomic size. Now, the Planck’s constant h 

had already made its appearance elsewhere. Bohr’s great insight lay in recognising that h, me, 

and e will yield the right atomic size. Construct a quantity with the dimension of length from h, 

me, and e and confirm that its numerical value has indeed the correct order of magnitude. 

Answer: 

Using dimensional analysis we can see that the quantity to be constructed and consisting of me, e 

and h will also have 𝜀0 and will be equal to 

𝜀0ℎ2

𝑚𝑒𝑒2  and has a numerical value of approximately 6.657×10-10 which is about the order of atomic 

radii. 

Q 12.15  (a)  The total energy of an electron in the first excited state of the hydrogen atom is 

about –3.4 eV. 

 What is the kinetic energy of the electron in this state? 

Answer: 

Since we know that kinetic energy is equal to the negative of the total energy 

K=-E 

K=-(-3.4) 

K=3.4 eV 

Q 12.15 (b) The total energy of an electron in the first excited state of the hydrogen atom is 

about –3.4 eV.  

What is the potential energy of the electron in this state? 

Answer: 

Total Energy= Potential energy + Kinetic Energy 

E=U+K 

U=E-K 

U=-3.4-3.4 

U=-6.8 eV 

Q 12.15 (c)   The total energy of an electron in the first excited state of the hydrogen atom is 

about - 3.4eV. 



 Which of the answers above would change if the choice of the zero of potential energy is 

changed? 

Answer: 

The total energy would change if the choice of the zero of potential energy is changed. 

Q 12.16 If Bohr’s quantisation postulate (angular momentum = 
𝑛ℎ

2𝜋
) is a basic law of nature, it 

should be equally valid for the case of planetary motion also. Why then do we never speak of 

quantisation of orbits of planets around the sun? 

Answer: 

We never speak of Bohr's quantization postulate while studying planetary motion or even motion 

of other macroscopic objects because they have angular momentum very large relative to the 

value of h. In fact, their angular momentum is so large as compared to the value of h that the 

angular momentum of the earth has a quantum number of order 1070 . Therefore the angular 

momentum of such large objects is taken to be continuous rather than quantized. 

Q 12.17   Obtain the first Bohr’s radius and the ground state energy of a muonic hydrogen atom 

[i.e., an atom in which a negatively charged muon (𝜇−) of mass about 207me orbits around a 

proton]. 

Answer: 

As per  Bohr's quantization postulate 

𝑚𝜇 − 𝑣𝑛𝑟𝑛 =
𝑛ℎ

2𝜋
 

Similarly, like the case in a simple hydrogen atom, the electrostatic force acts centripetally 

𝑚𝜇 − 𝑣𝑛
2

𝑟𝑛
=

𝑒2

4𝜋𝜀0𝑟𝑛
2
 

From the above relations, we can see that in Bohr's model the Radius is inversely proportional to 

the mass of the orbiting body and Energy is directly proportional to the mass of the orbiting 

body. 

In case of hydrogen, atom r1 is 5.3×10-11 m 

Therefore in case of a muonic hydrogen atom  

𝑟1 =
5.3 × 10−11

207
 

r1 = 2.56×10-13 m 

In case of the hydrogen atom, E1 is -13.6 eV 

Therefore in case of a muonic hydrogen atom  

E1=207×(-13.6) 

E1=2.81 keV  



  



 


