
CHAPTER – 13 

NUCLEI 

Q.13.1 (a) Two stable isotopes of lithium 𝐿3
6 𝑖 and 𝐿3

7 𝑖  have respective abundances of 7.5% and 

92.5%. These isotopes have masses 6.01512 𝑢 and 7.01600 𝑢, respectively. Find the atomic 

mass of lithium. 

Answer: 

Mass of the two stable isotopes and their respective abundances are  6.01512 𝑢 and  7.01600 𝑢 

and 7.5% and 92.5%. 

𝑚 =
6.01512 × 7.5 + 7.01600 × 92.5

100
 

m=6.940934 u 

Q. 13.1(b) Boron has two stable isotopes, 𝐵5
10  and 𝐵5

11 . Their respective masses are 10.01294 𝑢 

and  11.00931 𝑢, and the atomic mass of boron is 10.811 u. Find the abundances of 𝐵5
10  and 𝐵5

11  

. 

Answer: 

The atomic mass of boron is 10.811 u 

Mass of the two stable isotopes are  10.01294 𝑢 and 11.00931 𝑢 respectively 

Let the two isotopes have abundances x% and (100-x)% 

10.811 =
10.01294 × 𝑥 + 11.00931 × (100 − 𝑥)

100
 

Therefore the abundance of  𝐵5
10   is 19.89% and that of  𝐵5

11  is 80.11% 

Q. 13.2  The three stable isotopes of neon: 𝑁10
20 𝑒 𝑁10

21 𝑒 and 𝑁10
22 𝑒 have respective abundances of   

90.51%, 0.27% and 9.22%. The atomic masses of the three isotopes are 

19.99 𝑢, 20.99 𝑢, 𝑎𝑛𝑑 21.99 𝑢, respectively. Obtain the average atomic mass of neon. 

Answer: 

The atomic masses of the three isotopes are 19.99 u(m1), 20.99 u(m2) and 21.99u(m3) 

Their respective abundances are 90.51%(p1), 0.27%(p2) and 9.22%(p3) 

𝑚 =
19.99 × 90.51 + 20.99 × 0.27 + 21.99 × 9.22

100
 

𝑚 = 20.1771 𝑢 

The average atomic mass of neon is 20.1771 u. 

Q. 13.3  Obtain the binding energy( in MeV ) of a nitrogen nucleus ( 𝑁7
14 ), given m ( 𝑁7

14 ) =
14.00307 𝑢 

Answer: 



mn = 1.00866 u 

mp= 1.00727 u 

Atomic mass of Nitrogen m= 14.00307 u 

Mass defect Δm=7×mn+7×mp - m 

Δm=7×1.00866+7×1.00727 - 14.00307 

Δm=0.10844 

Now 1u is equivalent to 931.5 MeV 

Eb=0.10844×931.5 

Eb=101.01186 MeV 

Therefore binding energy of a Nitrogen nucleus is 101.01186 MeV. 

Q. 13.4 (i) Obtain the binding energy of the nuclei 𝐹26
56 𝑒 and 𝐵83

209 𝑖 in units of MeV from the 

following data: 

(i)  𝑚( 𝐹26
56 𝑒) = 55.934939 𝑢 

Answer: 

mH = 1.007825 u 

mn = 1.008665 u 

The atomic mass of 𝐹26
56 𝑒 is m=55.934939 u 

Mass defect  

𝛥𝑚 = (56 − 26) × 𝑚𝐻 + 26 × 𝑚𝑝 − 𝑚 

𝛥𝑚 = 30 × 1.008665 + 26 × 1.007825 − 55.934939 

Δm=0.528461 

Now 1u is equivalent to 931.5 MeV 

Eb=0.528461×931.5 

Eb=492.2614215 MeV 

Therefore the binding energy of a 𝐹26
56 𝑒 nucleus is 492.2614215 MeV. 

Average binding energy 

=
492.26

56
𝑀𝑒𝑉 = 8.79 𝑀𝑒𝑉 

Q. 13.4 (ii) Obtain the binding energy of the nuclei 𝐹26
56 𝑒 and 𝐵83

209 𝑖 in units of MeV from the 

following data: 

(ii) 𝑚( 𝐵83
209 𝑖) = 2.8.980388 𝑢 

Answer: 



mH = 1.007825 u 

mn = 1.008665 u 

The atomic mass of 𝐵83
209 𝑖 is m=208.980388 u 

Mass defect 

𝛥𝑚 = (209 − 83) + 83 × 𝑚𝐻 − 𝑚 

Δm=126×1.008665+83×1.007825 - 208.980388 

Δm=1.760877 u 

Now 1u is equivalent to 931.5 MeV 

Eb=1.760877 × 931.5 

Eb=1640.2569255 MeV 

Therefore the binding energy of a 𝐵83
209 𝑖 nucleus is 1640.2569255 MeV. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑛𝑑𝑖𝑛𝑔  𝑒𝑛𝑒𝑟𝑔𝑦 =
1640.25

208.98
= 7.84 𝑀𝑒𝑉 

Q.13.5 A given coin has a mass of 3.0 g. Calculate the nuclear energy that would be required to 

separate all the neutrons and protons from each other. For simplicity assume that the coin is 

entirely made of 𝐶29
63 𝑢  atoms (of mass 62.92960 𝑢). 

Answer: 

Mass of the coin is w = 3g 

Total number of Cu atoms in the coin is n 

𝑛 =
𝑤 × 𝑁𝐴

𝐴𝑡𝑜𝑚𝑖𝑐 𝑀𝑎𝑠𝑠
 

𝑛 =
3 × 6.023 × 1023

62.92960
 

n=2.871×1022 

mH = 1.007825 u 

mn = 1.008665 u 

Atomic mass of 𝐶29
63 𝑢 is m=62.92960 u 

Mass defect Δm=(63-29)×mn+29×mH - m 

Δm=34×1.008665+29×1.007825 - 62.92960 

Δm=0.591935 u 

Now 1u is equivalent to 931.5 MeV 

Eb=0.591935×931.5 

Eb=551.38745 MeV 



Therefore binding energy of a 𝐶29
63 𝑢 nucleus is 551.38745 MeV. 

The nuclear energy that would be required to separate all the neutrons and protons from each 

other is 

n×Eb=2.871×1022×551.38745 

=1.5832×1025 MeV 

=1.5832×1025×1.6×10-19×106J 

=2.5331×109 kJ 

Q.13.6 (i)   Write nuclear reaction equations for 

(i) 𝛼 − 𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝑅88
226 𝑎 

Answer: 

The nuclear reaction equations for the given alpha decay 

𝑅88
226 𝑎 → 𝑅86

222 𝑛 + 𝐻2
4 𝑒 

Q.13.6 (ii) Write nuclear reaction equations for 

(ii) 𝛼 − 𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝑃94
242 𝑢 

Answer: 

The nuclear reaction equations for the given alpha decay is 

𝑃94
242 𝑢 → 𝑈92

238 + 𝐻2
4 𝑒 

Q.13.6 (iii) Write nuclear reaction equations for 

(iii) 𝛽(iii) 𝛽(iii) 𝛽− − 𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝑃15
32  

Answer: 

The nuclear reaction equations for the given beta minus decay is 

𝑃15
32 → 𝑆16

32 + 𝑒− + �̅� 

Q.13.6 (iv) Write nuclear reaction equations for 

(iv) 𝛽− −  𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝐵83
210 𝑖 

Answer: 

The nuclear reaction equation for the given beta minus decay is 

𝐵83
210 𝑖 → 𝑃84

210 𝑜 + 𝑒− + 𝑣 ̅ 

Q.13.6 (v) Write nuclear reaction equations for 

(v) 𝛽+ −  𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝐶6
11  

Answer: 

The nuclear reaction for the given beta plus decay will be  



𝐶6
11 → 𝑃5

11 + 𝑒+ + 𝑣 

Q.13.6 (vi)  Write nuclear reaction equations for 

(vi) 𝛽+ −  𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝑇43
97 𝑐 

Answer: 

nuclear reaction equations for 

𝛽+ −  𝑑𝑒𝑐𝑎𝑦 𝑜𝑓 𝑇43
97 𝑐 𝑖𝑠 

𝑇43
96 𝑐 → 𝑀42

97 𝑜 + 𝑒+ + 𝑣 

Q.13.6 (vii) Write nuclear reaction equations for 

 Electron capture of 𝑋54
120 𝑒 

Answer: 

The nuclear reaction  for electron capture of   𝑋54
120 𝑒  is 

𝑋54
120 𝑒 + 𝑒− → 𝐼53

120 + 𝑣 

Q. 13.7  A radioactive isotope has a half-life of T years. How long will it take the activity to 

reduce to a) 3.125%, b)  1% of its original value? 

Answer: 

(a) The activity is proportional to the number of radioactive isotopes present 

The number of half years in which the number of radioactive isotopes reduces to x% of its 

original value is n. 

𝑛 = 𝑙𝑜𝑔2 (
100

𝑥
) 

In this case 

𝑛 = 𝑙𝑜𝑔2 (
100

3.125
) = 𝑙𝑜𝑔232 = 5 

It will take 5T years to reach 3.125% of the original activity. 

(b) In this case 

𝑛 = 𝑙𝑜𝑔2 (
100

1
) = 𝑙𝑜𝑔2100 = 6.64 

It will take 6.64T years to reach 1% of the original activity. 

Q.13.8 The normal activity of living carbon-containing matter is found to be about 15 decays per 

minute for every gram of carbon. This activity arises from the small proportion of radioactive 

𝐶6
14  present with the stable  carbon isotope 𝐶6

12 . When the organism is dead, its interaction with 

the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to 

drop. From the known half-life (5730 years) of    𝐶6
14  , and the measured activity, the age of the 

specimen can be approximately estimated. This is the principle of 𝐶6
14  dating used in 



archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute 

per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation. 

Answer: 

Since we know that activity is proportional to the number of radioactive isotopes present in the 

sample. 

𝑅

𝑅0
=

𝑁

𝑁0
=

9

15
= 0.6 

Also 

𝑁 = 𝑁0𝑒−𝜆𝑡 

𝑡 =
1

𝜆
𝑙𝑛

𝑁

𝑁0

 

𝑡 = −
1

𝜆
𝑙𝑛 0.6 

𝑡 =
0.51

𝜆
 

but 𝜆 =
0.693

𝑇1
2

 

Therefore  

𝑡 = 0.51 ×

𝑇1
2

0.693
 

𝑡 = 0.735𝑇1
2
 

𝑡 ≈ 4217 

The age of the Indus-Valley civilisation calculated using the given specimen is approximately 

4217 years. 

Q.13.9 Obtain the amount of 𝐶𝑜27
60  necessary to provide a radioactive source of 8.0 mCi strength. 

The half-life of 𝐶𝑜27
60  is 5.3 years. 

Answer: 

Required activity=8.0 mCi 

1 Ci=3.7×1010 decay s-1 

8.0 mCi=8×10-3×3.7×1010 =2.96×108 decay s-1 

T1/2=5.3 years 

𝜆 =
0.693

𝑇1
2

 



𝜆 =
0.693

5.3 × 365 × 24 × 3600
 

𝜆 = 4.14 × 10−9 𝑠−1 

𝑑𝑁

𝑑𝑡
=  −𝑁𝜆 

𝑁 = −
𝑑𝑁

𝑑𝑡
×

1

𝜆
 

𝑁 =  −(−2.96 × 108) ×
1

4.14 × 10−9
 

𝑁 = 7.15 × 1016 𝑎𝑡𝑜𝑚𝑠 

Mass of those many atoms of Cu will be 

𝑤 =
7.15 × 1016 × 60

6.023 × 1023
 

𝑤 = 712 × 10−6 𝑔 

7.12×10-6  g of 𝐶𝑜27
60   is necessary to provide a radioactive source of 8.0 mCi strength. 

Q. 13.10 The half-life of 𝑆𝑟38
90  is 28 years. What is the disintegration rate of 15 mg of this 

isotope? 

Answer: 

T1/2=28 years 

𝜆 =
0.693

28 × 365 × 24 × 3600
 

𝜆 = 7.85 × 10−10 𝑑𝑒𝑐𝑎𝑦 𝑠−1 

The number of atoms in 15 mg of  𝑆𝑟38
90  is 

𝑁 =
15 × 10−3 × 6.023 × 1023

90
 

N=1.0038×1020 

The disintegration rate will be 

𝑑𝑁

𝑑𝑡
=  −𝑁𝐴 

=-1.0038×1020×7.85×10-10 

=-7.88×1010 s-1 

The disintegration rate is therefore 7.88×1010 decay s-1. 

Q.13.11 Obtain approximately the ratio of the nuclear radii of the gold isotope 𝐴𝑢79
197  and the 

silver isotope 𝐴𝑔47
107  



Answer: 

The nuclear radii are directly proportional to the cube root of the mass number. 

The ratio of the radii of the given isotopes is therefore  

(
197

107
)

1
3

= 1.23 

Q.13.12  Find the Q-value and the kinetic energy of the emitted α -particle in the α-decay of 

(𝑎) 𝑅𝑎88
226  

Given       𝑚( 𝑅88
226 𝑎) = 226.02540 𝑢, 𝑚( 𝑅86

222 𝑛) = 222.01750 𝑢, 

𝑚( 𝑅86
222 𝑛) = 220.01137 𝑢     𝑚( 𝑃84

216 𝑜) = 216.00189 𝑢 

Answer: 

Mass defect is Δm 

𝛥𝑚 = 𝑚( 𝑅88
226 𝑎) − 𝑚( 𝑅86

222 𝑛) − 𝑚( 𝐻2
4 𝑒) 

Δm=226.02540-222.0175-4.002603 

Δm=0.005297 u 

1 u = 931.5 MeV/c2 

Q-value=Δm×931.5 

=4.934515 MeV 

By using Linear Momentum Conservation and Energy Conservation  

The kinetic energy of alpha particle = 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑎𝑓𝑡𝑒𝑟 𝑑𝑒𝑐𝑎𝑦

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑐𝑎𝑦
× 𝑄 − 𝑣𝑎𝑙𝑢𝑒 

=
222.01750

226.0254
× 4.934515 

=4.847 MeV 

Q.13.12 (b)  Find the Q-value and the kinetic energy of the emitted α -particle in the α-decay of 

(𝑏) 𝑅86
220 𝑛 

Given 𝑚( 𝑅88
226 𝑎) = 226.02540 𝑢,      𝑚( 𝑅86

222 𝑛) = 222.01750 𝑢 

𝑚( 𝑅86
222 𝑛) = 220.01137 𝑢,     𝑚( 𝑃84

216 𝑜) = 216.00189 𝑢, 

Answer: 

Mass defect is Δm 

𝛥𝑚 = 𝑚( 𝑅86
222 𝑛) − 𝑚( 𝑃84

216 𝑜) − 𝑚( 𝐻2
4 𝑒) 



Δm=220.01137-216.00189-4.002603 

Δm=0.006877 u 

1 u = 931.5 MeV/c2 

Q-value=Δm×931.5 

=6.406 MeV 

By using Linear Momentum Conservation and Energy Conservation  

The kinetic energy of alpha particle = 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 𝑎𝑓𝑡𝑒𝑟 𝑑𝑒𝑐𝑎𝑦

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑎𝑢𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑐𝑎𝑦
× 𝑄 − 𝑣𝑎𝑙𝑢𝑒 

=
216.00189

220.01138
× 6.406 

=6.289 MeV 

Q.13.13  The radionuclide 𝐶11  decays according to 

𝐶6
11 → 𝐵 + 𝑒+ + 𝑣;  𝑇1

2
= 20.3 𝑚𝑖𝑛 

The maximum energy of the emitted positron is 0.960 𝑀𝑒𝑉. 

Given the mass values: 

𝑚( 𝐶6
11 ) = 11.011434 𝑢  𝑎𝑛𝑑  𝑚( 𝐵6

11 ) = 11.009305 𝑢 

calculate Q and compare it with the maximum energy of the positron emitted. 

Answer: 

If we use atomic masses 

𝛥𝑚 = 𝑚( 𝐶6
11 ) − 𝑚( 𝐵5

11 ) − 2𝑚𝑒 

𝛥𝑚 = 11.011434 − 11.009305 − 2 × 0.00548 

𝛥𝑚 = 0.001033𝑢 

Q-value= 0.001033×931.5=0.9622 MeV which is comparable with a maximum energy of the 

emitted positron. 

Q.13.14  The nucleus 𝑁10
23 𝑒 decays by 𝛽− emission. Write down the β-decay equation and 

determine the maximum kinetic energy of the electrons emitted. Given that: 

(𝑖) 𝑚( 𝑁10
23 𝑒) = 22.994466 

(𝑖𝑖)𝑚( 𝑁11
23 𝑎) = 22.089770 𝑢              

Answer: 

The β decay equation is 

𝑁10
23 𝑒 → 𝑁11

23 𝑎 + 𝑒− + �̅� + 𝑄 



𝛥𝑚 = 𝑚( 𝑁10
23 𝑒) − 𝑁11

23 𝑎 − 𝑚𝑒 

𝛥𝑚 = 22.994466 − 22.989770 

𝛥𝑚 = 0.00469 𝑢 

(we did not subtract the mass of the electron as it is cancelled because of the presence of one 

more electron in the sodium atom) 

Q=0.004696×931.5 

Q=4.3743 eV 

The emitted nucleus is way heavier than the β particle and the energy of the antineutrino is also 

negligible and therefore the maximum energy of the emitted electron is equal to the Q value. 

Q. 13.15 (i) The Q value of a nuclear reaction 𝐴 + 𝑏 → 𝐶 + 𝑑 is defined by                                                                    

𝑄 = [𝑚𝐴 + 𝑚𝑏 − 𝑚𝑐 − 𝑚𝑑]𝑐2where the masses refer to the respective nuclei. Determine from 

the given data the Q-value of the following reactions and state whether the reactions are 

exothermic or endothermic. 

(𝑖) 𝐻1
1 + 𝐻1

3 → 𝐻1
2 + 𝐻 1

2 the following 

Atomic masses are given to be 

𝑚( 𝐻1
2 ) = 2.014102 𝑢 

𝑚( 𝐻1
3 ) = 3.0016049 

𝑚( 𝐻6
12 ) = 12.000000 𝑢 

𝑚( 𝑁10
20 𝑒) = 19.992439 𝑢 

Answer: 

𝛥𝑚 = 𝑚( 𝐻1
1 ) + 𝑚( 𝐻1

3 ) − 2𝑚( 𝐻1
2 ) 

𝛥𝑚 = 1.007825 + 3.001649 − 2 × 2.014102 

𝛥𝑚 = −0.00433 

The above negative value of mass defect implies there will be a negative Q value and therefore 

the reaction is endothermic 

Q. 13.15 (ii) The Q value of a nuclear reaction 𝐴 + 𝑏 → 𝐶 + 𝑑 is defined by                                                                    

𝑄 = [𝑚𝐴 + 𝑚𝑏 − 𝑚𝑐 − 𝑚𝑑]𝑐2where the masses refer to the respective nuclei. Determine from 

the given data the Q-value of the following reactions and state whether the reactions are 

exothermic or endothermic. 

(𝑖𝑖) 𝐶6
12 + 𝐶6

12 → 𝑁10
20 𝑒 + 𝐻2

4 𝑒 

Atomic masses are given to be 

𝑚( 𝐻1
2 ) = 2.014102 𝑢 

𝑚( 𝐻1
3 ) = 3.0016049 𝑢 

𝑚( 𝐻6
12 ) = 12.000000 𝑢 



𝑚( 𝑁10
20 𝑒) = 19.992439 𝑢 

 

Answer: 

𝛥𝑚 = 2𝑚( 𝐶6
12 ) − 𝑚( 𝑁10

20 𝑒) − 𝑚( 𝐻2
4 𝑒) 

𝛥𝑚 = 2 × 12.00000 − 19.992439 − 4.002603 

𝛥𝑚 = 0.004958 

The above positive value of mass defect implies Q value would be positive and therefore the 

reaction is exothermic 

Q.13.16 Suppose, we think of fission of a 𝐹26
56 𝑒 nucleus into two equal fragments, 𝐴13

28 𝑙  . Is the 

fission energetically possible? Argue by working out Q of the process. Given 𝑚( 𝐹26
56 𝑒) =

55.93494 𝑢 and 𝑚( 𝐴13
28 𝑙) = 27.98191 𝑢 

Answer: 

The reaction will be 𝐹26
56 𝑒 → 𝐴13

28 𝑙 + 𝐴13
28 𝑙 

The mass defect of the reaction will be 

𝛥𝑚 = 𝑚( 𝐹26
56 𝑒) − 2𝑚( 𝐴13

28 𝑙) 

𝛥𝑚 = 55.93494 − 2 × 27.98191 

𝛥𝑚 = −0.02888 𝑢 

Since the mass defect is negative the Q value will also negative and therefore the fission is not 

energetically possible 

Q. 13.17  The fission properties of 𝑃94
239 𝑢 are very similar to those of 𝑈92

235 . The average energy 

released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg 

of pure 𝑃94
239 𝑢  undergo fission? 

Answer: 

Number of atoms present in 1 kg(w) of  𝑃94
239 𝑢 =n 

𝑛 =
𝑤 × 𝑁𝐴

𝑚𝑎𝑠𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑢
 

𝑛 =
1000 × 6.023 × 1023

239
 

𝑛 = 2.52 × 1024 

Energy per fission (E)=180 MeV 

Total Energy released if all the atoms in 1 kg  𝑃94
239 𝑢 undergo fission = E × n 

=180 × 2.52×1024 

=4.536×1026 MeV 



Q. 13.18 A 1000𝑀𝑊 fission reactor consumes half of its fuel in5.00 𝑦. How much 𝑈92
235  did it 

contain initially? Assume that the reactor operates 80% of the time, that all the energy generated 

arises from the fission of 𝑈92
235  and that this nuclide is consumed only by the fission process. 

Answer: 

The amount of energy liberated on fission of 1  𝑈92
235  atom is 200 MeV. 

The amount of energy liberated on fission of 1g  𝑈92
235   

=
200 × 106 × 1.6 × 10−19 × 6.023 × 1023

235
 

= 8.2 × 1010 𝐽𝑔−1 

Total Energy produced in the reactor in 5 years 

= 1000 × 106 × 0.8 × 5 × 365 × 24 × 3600 

= 1.261 × 1017  𝐽 

Mass  of 𝑈92
235  which underwent fission, m 

=
1.261 × 1017

8.2 × 1010
 

=1537.8 kg 

The amount present initially in the reactor = 2m 

=2×1537.8 

=3075.6 kg 

Q. 13.19 How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of 

deuterium? Take the fusion reaction as 

𝐻1
2 + 𝐻1

2 → 𝐻2
3 𝑒 + 𝑛 + 3.27 𝑀𝑒𝑉 

Answer: 

The energy liberated on the fusion of two atoms of deuterium= 3.27 MeV 

Number of fusion reactions in 2 kg of deuterium = NA×500 

The energy liberated by fusion of 2.0 kg of deuterium atoms E 

= 3.27 × 106 × 1.6 × 10−19 × 6.023 × 1023 × 500 

= 1.576 × 1014 𝐽  

Power of lamp (P)= 100 W 

Time the lamp would glow using E amount of energy is T= 

=
𝐸

𝑃
 



=
1.576 × 1014

100 × 3600 × 24 × 365
 

=4.99×104 years 

Q. 13.20 Calculate the height of the potential barrier for a head on collision of two deuterons. 

(Hint: The height of the potential barrier is given by the Coulomb repulsion between the two 

deuterons when they just touch each other. Assume that they can be taken as hard spheres of 

radius 2.0 fm.) 

Answer: 

For a head-on collision of two deuterons, the closest  distances between their centres will be 

d=2×r 

d=2×2.0 

d=4.0 fm 

d=4×10-15 m 

charge on each deuteron = charge of one proton=q =1.6×10-19 C 

The maximum electrostatic potential energy of the system during the head-on collision will be E 

=
𝑞2

4𝜋𝜀0𝑑
 

=
9 × 109 × (1.6 × 10−19)2

4 × 10−15
 

=
9 × 109 × (1.6 × 10−19)2

4 × 10−15 × 1.6 × 10−19
𝑒𝑉 

= 360 𝑘𝑒𝑉 

The above basically means to bring two deuterons from infinity to each other would require 360 

keV of work to be done or would require 360 keV of energy to be spent. 

Q. 13.21  From the relation 𝑅 = 𝑅0𝐴
1

3, where 𝑅0 is a constant and A is the mass number of a 

nucleus, show that the nuclear matter density is nearly constant (i.e. independent of A). 

Answer: 

Mass of an element with mass number A will be about A u. The density of its nucleus, therefore, 

would be 

𝑑 =
𝑚

𝑣
 

𝑑 =
𝐴

4𝜋
3

(𝑅)3
 



𝑑 =
𝐴

4𝜋
3

(𝑅0𝐴
1
3)

3 

𝑑 =
3

4𝜋𝑅0^3 
 

As we can see the above density comes out to be independent of mass number A and R0 is 

constant, so  matter density is nearly constant 

Q. 13.22  For the 𝛽+ (positron) emission from a nucleus, there is another competing process 

known as electron capture (electron from an inner orbit, say, the K–shell, is captured by the 

nucleus and a neutrino is emitted). 

𝑒+ + 𝑋𝑍
𝐴 → 𝑌𝑍−1

𝐴 + 𝑣 

Show that if 𝛽+emission is energetically allowed, electron capture is necessarily allowed but not 

vice–versa. 

Answer: 

For the electron capture, the reaction would be 

𝑋𝑍
𝐴 → 𝑌𝑍−1

𝐴 + 𝑒+ + 𝑣 + 𝑄1 

The mass defect and q value of the above reaction would be 

𝛥𝑚1 = 𝑚( 𝑋𝑍
𝐴 ) + 𝑚𝑒 − 𝑚( 𝑌𝑍−1

𝐴 ) 

𝑄1 = ([𝑚( 𝑋𝑍
𝐴 ) − 𝑚( 𝑌𝑍−1

𝐴 )] + 𝑚𝑒)𝑐2 

where mN( 𝑋𝑍
𝐴 ) and mN( 𝑌𝑍−1

𝐴 ) are the nuclear masses of elements X and Y respectively 

For positron emission, the reaction would be 

𝑋𝑍
𝐴 → 𝑌𝑍−1

𝐴 + 𝑒+ + 𝑣 ̅ + 𝑄2 

The mass defect and q value for the above reaction would be 

𝛥𝑚2 = ( 𝑋𝑍
𝐴 ) − 𝑚((𝐴𝑍−1)𝑌) − 𝑚𝑒 

𝑄2 = ([𝑚( 𝑋𝑍
𝐴 ) − 𝑚( 𝑌𝑍−1

𝐴 )] − 𝑚𝑒)𝑐2 

From the above values, we can see that if Q2 is positive Q1 will also be positive but Q1 being 

positive does not imply that Q2 will also have to positive. 

Q.13.23 In a periodic table the average atomic mass of magnesium is given as 24.312 u. The 

average value is based on their relative natural abundance on earth. The three isotopes and their 

masses are  𝑀12
24 𝑔(23.98504 𝑢), 𝑀12

25 𝑔(24.98584 𝑢) and 𝑀12
26 𝑔(25.98259 𝑢). The natural 

abundance of is 78.99% by mass. Calculate the abundances of other two isotopes. 

Answer: 

Let the abundances of 𝑀12
25 𝑔 and 𝑀12

26 𝑔 be x and y respectively. 

x+y+78.99=100 



y=21.01-x 

The average atomic mass of Mg is 24.312 u 

24.312 =
78.99 × 23.98504 + 𝑥 × 24.98584 + (100 − 𝑥) × 25.98259

100
 

𝑥 ≈ 9.3 

𝑦 = 21.01 − 𝑥 

𝑦 = 21.01 − 9.3 

𝑦 = 11.71 

The abundances of 𝑀12
25 𝑔 and 𝑀12

26 𝑔  are 9.3% and 11.71% respectively 

Q.13.24 (i) The neutron separation energy is defined as the energy required to remove a neutron 

from the nucleus. Obtain the neutron separation energies of the nuclei 𝐶20
41 𝑎 from the following 

data: 

𝑚( 𝐶20
40 𝑎) = 39.962591 𝑢 

𝑚( 𝐶20
41 𝑎) = 40.962278 𝑢 

𝑚( 𝐴13
26 1) = 25.986895 𝑢 

𝑚( 𝐴13
27 1) = 26.981541 𝑢 

Answer: 

The reaction showing the neutron separation is 

𝐶20
41 𝑎 + 𝐸 → (4020)𝐶𝑎 + 𝑛0

1  

𝐸 = (𝑚( 𝐶20
40 𝑎) + 𝑚( 𝑛0

1 ) − 𝑚( 𝐶20
41 𝑎)𝑐2 

𝐸 = (39.962591 + 1.008665 − 40.962278)𝑐2 

𝐸 = (0.008978)𝑢 × 𝑐2 

But 1u=931.5 MeV/c2 

Therefore E=(0.008978)×931.5 

E=8.363007 MeV 

Therefore to remove a neutron from the 𝐶20
41 𝑎 nucleus 8.363007 MeV of energy is required  

Q.13.24 (ii) The neutron separation energy is defined as the energy required to remove a neutron 

from the nucleus. Obtain the neutron separation energies of the nuclei 𝐴13
27 1  from the following 

data: 

𝑚( 𝐶20
40 𝑎) = 39.962591 𝑢 

𝑚( 𝐶20
41 𝑎) = 40.962278 𝑢 

𝑚( 𝐴13
26 1) = 25.986895 𝑢 



𝑚( 𝐴13
27 1) = 26.981541 𝑢 

Answer: 

The reaction showing the neutron separation is 

𝐴13
27 1 + 𝐸 → 𝐴13

26 1 + 𝑛0
1  

𝐸 = (𝑚( 𝐶13
26 𝑎) + 𝑚( 𝑛0

1 ) − 𝑚( 𝐶13
27 𝑎))𝑐2 

𝐸 = (25.986895 + 1.008665 − 26.981541)𝑐2 

𝐸 = (0.014019)𝑢 × 𝑐2 

But 1u=931.5 MeV/c2 

Therefore E=(0.014019)×931.5 

E=13.059 MeV 

Therefore to remove a neutron from the 𝐴13
27 1  nucleus 13.059 MeV of energy is required  

Q.13.25 A source contains two phosphorous radio nuclides 𝑃15
32 (𝑇1

2

= 14.3𝑑) and 𝑃15
33 (𝑇1

2

=

25.3𝑑). Initially, 10% of the decays come from 𝑃15
33 . How long one must wait until 90% do so? 

Answer: 

Let initially there be N1 atoms of 𝑃15
32  and N2 atoms of 𝑃15

33  and let their  decay constants be 𝜆1 

and 𝜆2 respectively 

Since initially the activity of  𝑃15
33  is 1/9 times that of 𝑃15

32  we have 

𝑁1𝜆1 =
𝑁2𝜆2

9
      (i) 

Let after time t the activity of  𝑃15
33  be 9 times that of 𝑃15

32  

𝑁1𝜆1𝑒−𝜆1𝑡 = 9𝑁2𝜆2𝑒−𝜆2𝑡    (ii) 

Dividing equation (ii) by (i) and taking the natural log of both sides we get 

−𝜆1𝑡 = 𝑡 = 𝑙𝑛81 − 𝜆2𝑡 

𝑡 =
𝑙𝑛81

𝜆2 − 𝜆1

 

where 𝜆2 = 0.048/𝑑𝑎𝑦   and 𝜆1 = 0.027/𝑑𝑎𝑦 

t comes out to be 208.5 days 

Q.13.26 Under certain circumstances, a nucleus can decay by emitting a particle more massive 

than an α-particle. Consider the following decay processes: 

𝑅88
223 𝑎 → 𝑃82

209 𝑏 + 𝐶6
14  

𝑅88
223 𝑎 → 𝑅𝑛86

219 +
4

2
𝐻𝑒  



Calculate the Q-values for these decays and determine that both are energetically allowed. 

Answer: 

𝑅𝑎88
223 → 𝑃82

209 𝑏 + 𝐶6
14  

𝛥𝑚 = 𝑚( 𝑅88
223 𝑎) − 𝑚( 𝑃82

209 𝑏) − 𝑚( 𝐶6
14 ) 

= 223.01850 − 208.98107 − 14.00324 

= 0.03419 𝑢 

1 u = 931.5 MeV/c2 

Q=0.03419×931.5 

=31.848 MeV 

As the Q value is positive the reaction is energetically allowed 

𝑅88
223 𝑎 → 𝑅86

219 𝑛 + 𝐻2
4 𝑒 

𝛥𝑚 = 𝑚( 𝑅88
223 𝑎) − 𝑚( 𝑅86

219 𝑛) − 𝑚( 𝐻2
4 𝑒) 

= 223.01850 − 219.00948 − 4.00260 

= 0.00642 𝑢 

1 u = 931.5 MeV/c2 

Q=0.00642×931.5 

=5.98 MeV 

As the Q value is positive the reaction is energetically allowed 

Q.13.27 Consider the fission of 𝑈92
238  by fast neutrons. In one fission event, no neutrons are 

emitted and the final end products, after the beta decay of the primary fragments, are 𝐶58
140 𝑒 and 

𝑅44
99 𝑢. Calculate Q   for this fission process. The relevant atomic and particle masses are 

𝑚( 𝑈92
238 ) = 238.05079 𝑢 

𝑚( 𝐶58
140 𝑒) = 139.90543 𝑢 

𝑚( 𝑅44
99 𝑢) = 98.90594 𝑢 

Answer: 

The fission reaction given in the question can be written as 

𝑈92
238 + 𝑛0

1 → 𝐶58
140 𝑒 + 𝑅44

99 𝑢 + 10𝑒− 

The mass defect for the above reaction would be 

𝛥𝑚 = 𝑚𝑁( 𝑈92
238 ) + 𝑚( 𝑛0

1 ) − 𝑚𝑁( 𝐶58
140 𝑒) − 𝑚𝑁( 𝐶44

99 𝑒) − 10𝑚𝑒 

In the above equation, mN represents nuclear masses 

𝛥𝑚 = 𝑚( 𝑈92
238 ) − 92𝑚𝑒 + 𝑚( 𝑛0

1 ) − 𝑚( 𝐶58
140 𝑒) + 58𝑚𝑒 − 𝑚( 𝑅44

99 𝑢) + 44𝑚𝑒 − 10𝑚𝑒 



𝛥𝑚 = 𝑚( 𝑈92
238 ) + 𝑚( 𝑛0

1 ) − 𝑚( 𝐶58
140 𝑒) − 𝑚( 𝑅44

99 𝑢) 

𝛥𝑚 = 238.05079 + 1.008665 − 139.90543 − 98.90594 

𝛥𝑚 = 0.247995𝑢 

but 1u =931.5 MeV/c2 

Q=0.247995×931.5 

Q=231.007 MeV 

Q value of the fission process is 231.007 MeV 

Q.13.28 (i) Consider the D–T reaction (deuterium-tritium fusion) 

𝐻1
2 + 𝐻1

3 → 𝐻2
4 𝑒 + 𝑛 

(a) Calculate the energy released in MeV in this reaction from the data: 

𝑚( 𝐻1
2 ) = 2.014102 𝑢 

𝑚( 𝐻1
3 ) = 3.016049 𝑢          

Answer: 

The mass defect of the reaction is  

𝛥𝑚 = 𝑚( 𝐻1
2 ) + 𝑚( 𝐻1

3 ) − 𝑚( 𝐻2
4 𝑒) − 𝑚( 𝑛0

1 ) 

𝛥𝑚 = 2.014102 + 3.016049 − 4.002603 − 1.008665 

𝛥𝑚 = 0.018883𝑢 

1u = 931.5 MeV/c2 

Q=0.018883×931.5=17.59 MeV 

Q.13.28 (b) Consider the D–T reaction (deuterium–tritium fusion) 

𝐻1
2 + 𝐻1

3 → 𝐻2
4 𝑒 + 𝑛 

(b) Consider the radius of both deuterium and tritium to be approximately 2.0 fm. What is the 

kinetic energy needed to overcome the coulomb repulsion between the two nuclei? To what 

temperature must the gas be heated to initiate the reaction? (Hint: Kinetic energy required for 

one fusion event =average thermal kinetic energy available with the interacting particles =
2(3𝑘𝑇/2); k = Boltzman’s constant, T = absolute temperature.) 

Answer: 

To initiate the reaction both the nuclei would have to come in contact with each other. 

Just before the reaction the distance between their centres would be 4.0 fm. 

The electrostatic potential energy of the system at that point would be 

𝑈 =
𝑞2

4𝜋𝜀0𝑑
 



𝑈 =
9 × 109(1.6 × 10−19)2

4 × 10−15
 

𝑈 = 5.76 × 10−14𝐽 

The same amount of Kinetic Energy K would be required to overcome the electrostatic forces of 

repulsion to initiate the reaction 

It is given that 𝐾 = 2 ×
3𝑘𝑇

2
 

Therefore the temperature required to initiate the reaction is 

𝑇 =
𝐾

3𝑘
 

=
5.76 × 10−14

3 × 1.38 × 10−23
 

= 1.39 × 109𝐾 

Q. 13.29 Obtain the maximum kinetic energy of β- particles, and the radiation frequencies of γ 

decays in the decay scheme shown in Fig. 13.6. You are given that 

                  𝑚( 𝐴198 𝑢) = 197.968233 𝑢 

                  𝑚( 𝐻𝑔198 ) = 197.966760 𝑢 

                    

Answer: 

𝛾1 decays from 1.088 MeV to 0 V 

Frequency of 𝛾1 is 

𝑣1 =
1.088 × 106 × 1.6 × 10−19 

6.62 × 10−34
 

𝑣1 = 2.367 × 1020𝐻𝑧 

Plank's constant, h=6.62×10-34 Js 𝐸 = ℎ𝑣 

Similarly, we can calculate frequencies of 𝛾2 and 𝛾3 



𝑣2 = 9.988 × 1019  𝐻𝑧 

𝑣3 = 1.639 × 1020  𝐻𝑧  

The energy of the highest level would be equal to the energy released after the decay 

Mass defect is 

𝛥𝑚 = 𝑚( 𝑈79
196 ) − 𝑚( 𝐻80

196 𝑔) 

𝛥𝑚 == 197.968233 − 197.966760 

𝛥𝑚 = 0.001473𝑢 

We know 1u = 931.5 MeV/c2 

Q value= 0.001473×931.5=1.3721 MeV 

The maximum Kinetic energy of 𝛽1
− would be 1.3721-1.088=0.2841 MeV 

The maximum Kinetic energy of 𝐵2
− would be 1.3721-0.412=0.9601 MeV 

Q. 13.30 Calculate and compare the energy released by a) fusion of 1.0 kg of hydrogen deep 

within Sun and b) the fission of 1.0 kg of 235U in a fission reactor. 

Answer: 

(a) 𝐻1
1 𝐻1

1 + 𝐻1
1 + 𝐻1

1 + 𝐻1
1 → 𝐻2

4 𝑒 

The above fusion reaction releases the energy of 26 MeV 

Number of Hydrogen atoms in 1.0 kg of Hydrogen is 1000NA 

Therefore 250NA such reactions would take place 

The energy released in the whole process is E1 

= 250 × 6.023 × 1023 × 26 × 106 × 1.6 × 10−19 

(b) The energy released in fission of one 𝑈92
235  atom is 200 MeV 

Number of 𝑈92
235  atoms present in 1 kg of 𝑈92

235  is N 

𝑁 =
1000 × 6.023 × 1023

235
 

𝑁 = 2.562 × 1024 

The energy released on fission of N atoms is E2 

𝐸 = 2.562 × 1024 × 200 × 106 × 1.6 × 10−19 

𝐸 = 8.198 × 1013  𝐽 

𝐸1

𝐸2

=
6.2639 × 1014

8.198 × 1013
≈ 8 

Q. 13.31 Suppose India had a target of producing by 2020 AD, 200,000 MW of electric power, 

ten percent of which was to be obtained from nuclear power plants. Suppose we are given that, 



on an average, the efficiency of utilization (i.e. conversion to electric energy) of thermal energy 

produced in a reactor was 25%. How much amount of fissionable uranium would our country 

need per year by 2020? Take the heat energy per fission of 235U to be about 200MeV. 

Answer: 

Let the amount of energy to be produced using nuclear power per year in 2020 is E 

𝐸 =
200000 × 106 × 0.1 × 365 × 24 × 3600

0.25
 𝐽 

 (Only 10% of the required electrical energy is to be produced by Nuclear power and only 25% 

of thermo-nuclear is successfully converted into electrical energy) 

Amount of Uranium required to produce this much energy is M 

(NA=6.023×1023, Atomic mass of Uranium is 235 g) 

=3.076×104 kg  



 


