

QUANTITATIVE
 APTITUDE DATA INTERPRETATION

Stay Connected With SPNotifier

	\checkmark
	тм
	0

EBooks for Bank Exams, SSC \& Railways 2020

General Awareness EBooks

Computer Awareness EBooks

Monthly Current Affairs Capsules

Quantitative Aptitude

Quantitative Aptitude is an important and highly scoring topic in Competitive Exams especially in Bank Exams. Quantitative Aptitude or Data Interpretation based questions are structured assessments that evaluate the talent and skills of the Candidates. It measures the problem-solving skills of the candidates so it has become an important part of Bank Exams.

Every bank exam includes Quantitative Aptitude in their Prelim and Mains Exams. Banks like SBI, IBPS (for Clerk \& PO), IBPS RRB and RBI Grade B includes Quantitative Aptitude in their syllabus to examine the candidates' Thinking power. To understand the importance of Quantitative Aptitude let us have a look at the weightage of this topic in different banking exams.

Prelims and Mains Syllabus for Bank Exams

Prelims Syllabus	Mains Syllabus
- Number Series - Data Interpretation - Simplification/Approximation - Quadratic Equation - Data Sufficiency - Mensuration - Average - Profit and Loss - Ratio and Proportion - Time and Work - Time and Distance - Probability - Partnership - Problem on Ages - Simple and Compound Interest \leftrightarrow Permutation and Combination	\checkmark Simplification - Average - Percentage - Ratio and Percentage - Data Interpretation - Mensuration and Geometry - Quadratic Equation \checkmark Interest - Problems of Ages - Profit and Loss - Number Series - Speed, Distance and Time - Time and Work \uparrow Number System - Data Sufficiency - Linear Equation \checkmark Permutation and Combination - Probability - Mixture and Allegations

Quantitative Aptitude - Data Interpretation

Direction (1-5): Read the following information carefully and answer the given questions:

Total distance between A to B is 240 km . Train P starts running with an average speed of (S) kmph from A to B while another train Q starts running after 2 hours of train A and reaches $B 60$ minutes before train P. If train A stops for 60 minutes at a line crossing and second train did not stop at any place, then the ratio between the speed of train P to speed of train Q is $4: 5$. Prem distributed Rs. 14000 between his two daughters Anu and Bharathi and both of them invested at the rate of (S-6) \% SI per annum. The age of Bharathi and Anu at that time was 18 years and (S) years respectively and such that each daughter may get equal amounts, when they attain the age of 21 years. Initial amount the Anu has is (T). The price of article increased by $(\mathrm{S}) \%$ every year. If the difference between the price at the end of the third year and fourth years is (U) and the price at the end of second year is Rs.23200. Prem sells his car, if profit on selling a car for (T) is thrice the loss on selling it for Rs.4500. The Cost price of Prem car is (V).

1) Find the value in the place of (S)

A. 15 kmph
B. 26 kmph
C. 16 kmph
D. 18 kmph
E. None of these
2) Find the value in the place of (V)
A. Rs. 8000
B. Rs. 6000
C. Rs. 4000
D. Rs. 5000
E. None of these

3) Quantity I: U

Quantity II: T

A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity II > Quantity I
D. Quantity II \geq Quantity I
E. Quantity I = Quantity II or Relation cannot be established
4) Find the difference between V and T ?
A. Rs. 1500
B. Rs. 2500
C. Rs. 500
D. Rs. 1600
E. None of these
5) Find the value in the place of (U)
A. 4305.92
B. 4206.92
C. 4108.92
D. 4006.92
E. None of these

Directions (6-10): Study the following graph carefully and answer the given questions.
The table shows the discount rate of four different items in five different shops

Shops	Item 1	Item 2	Item 3	Item 4
A	25%	15%	-	30%
B	20%	-	16%	-
C	-	12%	-	15%
D	10%	30%	20%	-
E	30%	-	10%	20%

6) Quantity I: If the ratio of the marked price of item 1 and item 4 in shop E is $15: 14$, and the marked price of shop D in item 1 is Rs. 7000 . Find the selling price of item 4 in shop E ?

Quantity II: In item 2, if marked price in shop C is 25% more than the cost price and the profit percentage of shop C is 10% which is equal to 280 . Find the cost price of shop D if marked price of item $\mathbf{2}$ in shop D is 10% more than the cost price?
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity I < Quantity II
D. Quantity I \leq Quantity II
E. Quantity I = Quantity II (or) Relationship cannot be determined
7) Quantity I: Item 3, cost price of all the shops is Rs. 4800 and the marked price is $\mathbf{4 0 \%}$, $\mathbf{5 0 \%}$ and $\mathbf{2 5 \%}$ more than the cost price in shop B, D and E respectively. Find the total selling price of shop B, D and E together

Quantity II: If the selling price of item 4 of all the shops is Rs. 9520 , find the total marked price of shop A, C and E ?
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity I < Quantity II
D. Quantity I \leq Quantity II
E. Quantity I = Quantity II (or) Relationship cannot be determined
8) Quantity I: In shop E, Cost price of item 1 is Rs. 800 more than the cost price of item 4 and the marked price of item 1 and 4 is 60% and 80% more than the cost price respectively. Find the selling price of item 4 if the selling price is same for both the items?

Quantity II: If the marked price of item 3 in shop B is $\mathbf{2 0 \%}$ more than the cost price, which is $\mathbf{6 0 0 0}$, find the marked price of item 3 in shop D ?
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity I < Quantity II
D. Quantity I \leq Quantity II
E. Quantity I = Quantity II (or) Relationship cannot be determined
9) In shop D, if the ratio of marked price in item 1, item 2 and item 3 is 56: 72: 63 and the marked price of item 1 in shop B is Rs. 6300.

Quantity I: Find the marked price of item $\mathbf{2}$ in shop A

Quantity II: Find the marked price of item 3 in shop E
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity I < Quantity II
D. Quantity I \leq Quantity II
E. Quantity I = Quantity II (or) Relationship cannot be determined
10) Quantity I: Find the marked price of item 4 in shop A. If the marked price of item 4 in shop E is Rs. 6300

Quantity II: Find the marked price of item 2 in shop C. If the marked price of item $\mathbf{2}$ in shop D is Rs. 4400
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity I < Quantity II
D. Quantity I \leq Quantity II
E. Quantity I = Quantity II (or) Relationship cannot be determined

Direction (11-15): Read the following information carefully and answer the given questions:

Sachin and Virat played five different matches. Sachin scored 60\% runs in Match1 whereas score of Virat in the same match is 100 . Sachin scored 60% runs in Match2 which is 60 more than the runs of Virat in the same match. The ratio between the runs of Virat and Sachin in Match3 is 2: 3, whereas the difference in their runs in Match3 is 48 . The total score in Match3 is 80% of the total score in Match5. Sachin scored 78 runs in Match4 which is 18 more than runs of Virat in the same Match. Sachin scored 60 less than runs that of Virat in the same Match.
11) Quantity I: What is average score of Sachin in all the 5 matches together?

Quantity II: What is the average score of Virat in all the 5 matches together?
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity II > Quantity I
D. Quantity II \geq Quantity I
E. Quantity I = Quantity II or Relation cannot be established

12) Find the total score in Match6?

Statement I: Sachin's score in Match6 is 50\% of the runs in his score in Match2 and the Virat score in Match6 is $\mathbf{8 0 \%}$ of Sachin in the same match.

Statement II: Sachin scored 40\% runs in Match6.
A. Only I
B. Only II
C. Either I or II sufficient
D. All I and II necessary to the answer the question TM
E. The question can't be answered even with all I and II
13) Quantity I: Virat score in Match5 is what percent of the total score in Match3?

Quantity II: Sachin score in Match3 is what percent of the total score in the same match?
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity II > Quantity I
D. Quantity II \geq Quantity I
E. Quantity I = Quantity II or Relation cannot be established
14) Find the difference between the total score of Virat in all the given five Matches together and the sum of the total score in Match4 and Match2 together?
A. 148
B. 152
C. 118
D. 147
E. None of these
15) What is the average total score of the all the five matches together?
A. 280
B. 260
C. 270
D. 250
E. None of these

Directions (16-20): Study the following graph carefully and answer the given questions.
The table shows the number of days taken by Swathi to complete the given percentage of work and the time ratio of Swathi to Shivani to complete the whole work.

Job Name	Percentage of a work done by Swathi	Number of days taken by Swathi	Days ratio of Swathi to Shivani to complete the whole work alone
A	20%	5	$5: 4$
B	50%	15	$6: 5$
C	40%	12	$2: 1$
D	15%	3	$5: 6$
E	30%	6	$5: 4$

16) Find the number of days taken by Sumaya to complete the Job-C alone?

Statement I: Swathi and Shivani started working to complete Job-C, Sumaya also joins with them to complete the work 4 days before the actual time taken by Swathi and Shivani working together.

Statement II: Swathi started working to complete Job-C with 75% of her original efficiency. After some days Sumaya joins with her and completed Job-C in 30 days.
A. Only statement I alone is sufficient to answer
B. Only statement II alone is sufficient to answer
C. Either statement I or II alone is sufficient to answer the question
D. Both statements I and II alone are sufficient to answer the question
E. Both statements I and II alone are not sufficient to answer the question
17) Find the total wage to complete Job-B?

Statement I: Swathi and Shivani started working to complete Job-B with their 20\% and 25\% less than the original efficiency respectively. The ratio of the number of days taken by Swathi and Shivani to complete Job-B is 3 : 4. The difference between their wages is Rs. 300.

Statement II: Shivani started working to complete Job-B. After 6 days Swathi also joins with her and increased her efficiency by $\mathbf{2 0 \%}$. Swathi left the work 5 days before the work was completed and get Rs. 8400 as wage.
A. Only statement I alone is sufficient to answer
B. Only statement II alone is sufficient to answer
C. Either statement I or II alone is sufficient to answer the question
D. Both statements I and II alone are sufficient to answer the question
E. Both statements I and II alone are not sufficient to answer the question
18) Find the total number of days taken to complete Job A?

Statement I: Shivani started working to complete Job-A and after 5 days Janani joins with her. The ratio of the number of days they worked to complete Job-A is 35: 12.

Statement II: Sumi is $\mathbf{2 5 \%}$ more efficient than Swathi to complete Job-A. They worked alternatively starting with Sumi to complete Job-A.
A. Only statement I alone is sufficient toanswer
B. Only statement II alone is sufficient to answer
C. Either statement I or II alone is sufficient to answer the question
D. Both statements I and II alone are sufficient to answer the question
E. Both statements I and II alone are not sufficient to answer the question
19) Find the number of days taken by Krish alone to complete Job-D?

Statement I: Shivani and Krish started working to complete Job-D and the ratio of the number of days worked by Shivani to Krish is 5: 2.

Statement II: Shivani and Krish completes the Job- B in (375/88) days less than the total number of days taken by Shivani and Swathi working together till the work completed.
A. Only statement I alone is sufficient toanswer
B. Only statement II alone is sufficient to answer
C. Either statement I or II alone is sufficient to answer the question
D. Both statements I and II alone are sufficient to answer the question
E. Both statements I and II alone are not sufficient to answer the question

20) What is the efficiency ratio of Janavi to Kamali?

Statement I: Shivani started working to complete Job- C and after 4 days, Janavi joins with him and after few days Janavi replaced by Kamali. The remaining work was completed in 5 days.

Statement II: Janavi and Kamali started working together to complete Job-B and completed the work same as the number of days taken by Shivani and Swathi working together.
A. Only statement I alone is sufficient toanswer
B. Only statement II alone is sufficient to answer
C. Either statement I or II alone is sufficient to answer the question
D. Both statements I and II alone are sufficient to answer the question
E. Both statements I and II alone are not sufficient to answer the question

Directions (21-25): Study the following information carefully and answer the given questions:

The given bar graph shows the number (in thousands) of products manufactured and line graph shows percentage of unsold products by a company over the years 2013-2017.

Unsold(in percentage)

21) What is the average number of products sold in over the years 2013 to 2017 ?
A. 28766
B. 27866
C. 28966
D. 37866
E. None of these
22) What is the ratio of defective to non-defective product of the company in 2017 ?

Statement I: The defective product of the company in 2017 is 80% of the unsold product of company in the year 2015.

Statement II: Non defective product of the company in the year 2017 is half of the number of product manufactured in the year 2013.
A. Only I
B. Only II
C. Either I or II sufficient
D. All I and II necessary to the answer the question
E. The question can't be answered even with all I and II
23) What is the unsold product of the company in 2018 ?

Quantity I: The number of products is manufactured by company in the year 2018 is 120% of the product manufactured in 2016. The ratio of the number of product sold and unsold in the year 2018 is 4: 3.

Quantity II: The number of unsold products in the year 2018 is equal to the number of defective products in the year 2014. And the non-defective product of the company in the year 2014 is 80% of the number of products sold in 2013.
A. Quantity I > Quantity II
B. Quantity I \geq Quantity II
C. Quantity II > Quantity I
D. Quantity II \geq Quantity I
E. Quantity I = Quantity II or Relation cannot be established
24) Sum of the difference between the sold and unsold product in 2014 and 2015 together is approximately what percent more than that of the total number of product unsold in the year 2013, 2016 and 2017 together?
A. 105%
B. 93%
C. 72%
D. 66%
E. 117\%
25) What is the average number of products manufactured by company 2014, 2016 and 2017 together?
A. 35000
B. 39000
C. 37000
D. 34000

E. None of these

Directions (26-30): Study the following information carefully and answer the questions given below:

The line graph represents number of days taken by five boys to complete a piece of work.

The bar graph represents number of days taken by five girls to complete the piece of work.

26) Neeraj started the work and left after five days. Find the number of days taken by Pari and Riya to complete the remaining part of the work.
A. 12 days
B. 20 days
C. 15 days
D. 10 days
E. None of these
27) Find the respective ratio of efficiencies of Murali and Tinku together and efficiencies of Surbhi and Sneha together.
A. $3: 5$
B. 5:7
C. $4: 5$
D. 3:4
E. None of these
28) If Narayan and Jiya work alternately started with Narayan, find the number of days taken by them to complete the work.
A. $22\left(\frac{1}{5}\right)$ days
B. $25\left(\frac{1}{4}\right)$ days
C. $23\left(\frac{1}{6}\right)$ days
D. $27\left(\frac{1}{2}\right)$ days
E. None of these
29) If all the girls work together, find the number of days taken by them to complete the work.
A. $\left(\frac{2200}{279}\right)$ days
B. $\left(\frac{4200}{659}\right)$ days
C. $\left(\frac{2100}{559}\right)$ days
D. $\left(\frac{1400}{359}\right)$ days
E. None of these
30) Keshav and Narayan started the work and left after four days. Find the number of days taken by Sneha to complete the remaining part of the work.
A. $\frac{50}{3}$ days
B. $\frac{40}{3}$ days
C. $\frac{80}{3}$ days
D. $\frac{{ }_{20}^{30}}{3}$ days
E. None of these

Directions (31-35): Study the following information carefully and answer the questions given below:

The pie chart represents percentage wise distribution of total number of students in five schools.

The table represents ratio of number of local students and non-local students.

Total number of students in five schools $=8000$

$\|P\| Q \| R=S \# T$

Schools	Local : Non-local
P	$5: 3$
Q	$3: 2$
R	$5: 4$
S	$1: 3$
T	$3: 5$

31) Out of the total local students of school P 40\% are girls. Find the difference between number of local girls and number of local boys in school P.
A. 280
B. 420
C. 240
D. 360
E. None of these
32) Find the respective ratio of number of local students in school Q and number of non-local students in school S.
A. $5: 4$
B. $2: 1$
C. $3: 2$
D. $4: 3$
E. None of these
33) Ratio of number of boys and number of girls in school R is $5: 4$ respectively. If out of the local students in school R, 60\% are girls, find the number of non-local girls in school R.
A. 160
B. 540
C. 240
D. 480
E. None of these
34) Number of local students in school T and school S together is what percent more/less than the number of local students in school P?
A. 40% more
B. 35% less
C. 40% less
D. 35% more
E. None of these
35) Find the total number of non-local students in all the schools together.
A. 5220
B. 3840
C. 2460
D. 4220
E. None of these

Directions (36-40): Study the following information carefully and answer the given questions:

The following bar graph shows the production of mobiles (In thousands) of different companies in two different years.

Company	Percentage of export in $\mathbf{2 0 1 6}$	Percentage of Export in 2017
A	40%	60%
B	42%	-
C	20%	-
D	30%	-
E	-	70%
F	25%	-

36) The average number of mobiles exported by company D and F in 2017 is 35000 while the mobiles exported by company D in 2016 is twice the export in 2017 then find the percentage of export by company F out of total production of company F in 2017?
A. 65%
B. 72%
C. 80%
D. 85%
E. 92 \%
37) If company E exported a total of 50000 mobiles in the year 2016 and 2017 , then find the percentage of mobiles exported by company E in 2016 ?
A. 35%
B. 27.5%
C. 20 \%
D. 17.5 \%
E. None of these
38) The total number of mobiles exported by company A in 2016 and 2017 is $2 / 3$ of the mobiles exported by company C in these years then find the percentage of mobiles that were exported by company C out of total production in 2017?
A. 72 \%
B. 56.25 \%
C. 45 \%
D. 64.75%
E. 75 \%
39) The $\mathbf{2 0 \%}$ of the mobiles exported by company B in 2016 are defective while the ratio between the defective mobiles exported by company B in the year 2016 and 2017 is 7 :5 and the percentage of defective mobiles out of total export by company B in 2017 is 13.5% then find the percentage of mobile exported by company B out of total production?
A. 45.66%
B. 72.77%
C. 48.55%
D. 66.67%
E. 56.33 \%
40) Find the difference between the mobiles exported by company A, B and D in 2016 to that of the mobiles exported by company A and E in 2017?
A. 18500
B. 24200
C. 20600
D. 19700
E. None of these

Directions (41-45): Study the following information carefully and answer the given questions:
The following table represents time taken (in hours) by different pipes to fill a cistern. Some values are missing.

Pipes	Time taken to fill the cistern
A	24
B	-
C	-
D	30
E	45
F	-

41) If A and C kept open for 4 hours then A is replaced by D and kept open for 5 more hours, the tank is filled. In how many hours pipe C alone can fill the cistern?
A. $7 \frac{3}{4}$ hours
B. $13 \frac{1}{2}$ hours
C. $6 \frac{5}{6}$ hours
D. $12 \frac{3}{4}$ hours
E. None of these
42) Two pipes D and E are opened simultaneously to fill the cistern. After how much time should D be closed so that E alone can fill the cistern in another $\mathbf{2 0}$ hours?
A. 8 hours
B. 14 hours
C. 12 hours
D. 10 hours
E. None of these
43) If C takes half of the time taken by F to fill the cistern and F takes half of the time taken by B to fill the cistern and all of them working together can fill the cistern in 48 hours, What is the time taken by F to fill the cistern?
A. 152 hours
B. 144 hours
C. 186 hours
D. 168 hours
E. None of these
44) Two pipes A and D can fill the cistern. If they are opened on alternative hours and if pipe A is opened first, in how many hours will the cistern be full?
A. $24\left(\frac{1}{3}\right)$ hours
B. $26\left(\frac{3}{5}\right)$ hours
C. $26\left(\frac{-}{4}\right)$ hours
D. $25\left(\frac{-}{2}\right)$ hours
E. None of these
45) Three pipes A, D and F together can fill the cistern in 8 hours. Find the time taken by F alone to fill the cistern?
A. 20 hours
B. 15 hours
C. 18 hours
D. 12 hours
E. None of these

Directions (46-48): Read the following information carefully and answer the given questions.
There are 400 students in a school in which 25% girls. All of them like at least one of the three different fruits viz. Mango, Apple and Papaya.

Boys: 10\% likes Mango and Papaya together not Apple. 5\% likes all the three fruits and 25% likes only Apple. 15\% likes only Papaya.

Girls: $\mathbf{2 0 \%}$ likes only Papaya and 15% likes Mango and Papaya but not Apple. 20% likes only Mango.
46) Find the ratio of the number of boys like Mango to the number of girls like Apple?

Statement I: 10\% of boys like Apple and Papaya but not Mango

Statement II: 20\% of boys like only Mango
A. Statement I alone is sufficient to answer the question
B. Statement II alone is sufficient to answer the question
C. Either statement I alone or II alone is sufficient to answer the question
D. Both the statements I and II together are not necessary to answer the question
E. Both the statements I and II together are necessary to answer thequestion
47) If $\mathbf{2 0 \%}$ of girls like Mango and Apple and $\mathbf{1 5 \%}$ of girls like Only Apple. 50\% of boys like Mango.

Quantity I: Find the number of boys like Apple and Papaya but not Mango
Quantity II: Find the number of girls like Apple and Papaya but not Mango
Quantity III: If the number of girls like Mango and Apple but not Papaya is 2 more than the number of girls like Apple and Papaya but not Mango, then find the number of girls like all the three fruits.

Which of the following should be placed in the blank spaces of the expression "Quantity I \qquad Quantity II_Quantity III" from left to right with respect to the above statements?
A. $>,>$
B. $<,>$
C. $<,<$
D. $>,<$
E. None of these
48) If the $\mathbf{2 0 \%}$ of boys and $\mathbf{1 5 \%}$ of girls like only Mango and Only Apple respectively, then find the difference between the number of boys and girls like at least two fruits.
A. 75
B. 90
C. 80
D. 110
E. 55

Directions (49-50): Study the following graph carefully and answer the given questions.

Train P started from station A towards station D with the speed of $40 \mathrm{Km} / \mathrm{h}$ at the same time train Q started from station D towards station A with the speed of $60 \mathrm{Km} / \mathrm{h}$. All the four stations are in a straight line from left to right in the order A, B, C and D and distance between the consecutive stations is same (i.e.) 480 Km .
49) Which of the following statement is not true if train P and Q started from station A and B respectively at the end of $\mathbf{3}$ hours?
A. Train Q covered 60 km more than the train P
B. Train Q is 360 km far away from station C
C. Train P is 360 km far away from station B
D. The distance between train P and train Q is 1140 km
E. All are true
50) At what time train P and Q will meet each other?
A. 12 hours 20 minutes
B. 13 hours 30 minutes
C. 14 hours 20 minutes
D. 14 hours 24 minutes
E. None of these

Answers and Explanations

1. Answer: C

Explanation [1-5]: Let us take the original time taken to cross 240 km distance be x hours Time taken by train P to reach $B=(X+1)$

Time taken by train Q to reach $B=(x+1)-2-1=(x-2)$
Speed of train $P=\frac{240}{(x+1)}$
Speed of train $Q=\frac{240}{(x-2)}$
$\frac{\begin{array}{c}240 \\ \frac{(x+1)}{240} \\ (x-2)\end{array}}{\substack{24 \\(x)}} \frac{4}{5}$
$\frac{(x-2)}{(x+1)}=\frac{4}{5}$
$X=14$

Time taken by train $P=15$ hrs

Time taken by train $\mathrm{Q}=12 \mathrm{hrs}$
Speed of train $P(S)=\frac{240}{15}=16 \mathrm{kmph}$

Let the amount received by Anu=A
Let the amount received by Bharathi=14000-A
$A+\frac{A * 5 * 10}{100}=(14000-A)+\left(\frac{(14000-A) * 10 * 3}{100}\right.$
$\mathrm{A}+\frac{A}{2}=(14000-\mathrm{A})+4200-\frac{3 A}{10}$
$3 A / 2=18200-A-3 A / 10$
$3+\frac{A}{2}+\frac{3 A}{10}=18200$
$28 A=182000$
$A=6500$

Anu received (T) =Rs. 6500
Initial amount=a

Second years $=\frac{a * 116}{100}$
$116 a / 100=23200$
$a=20000$
Third year $=\frac{a * 116}{100} * \frac{116}{100}$
Fourth year $=\frac{a * 116}{100} * \frac{116}{100} * \frac{116}{100}$
Difference of fourth and third year
$(U)=\frac{a * 116}{100} * \frac{116}{100} * \frac{116}{100-1}$
$\mathrm{U}=\frac{2000 * 116}{100} * \frac{116}{100} * \frac{116}{100}$
Difference of fourth and third year $(U)=4305.92$
Cost price of car $=\mathrm{V}$
$6500-V=3(V-4500)$
$6500-V=3 V-13500$
$4 V=20000$
$V=5000$
2. Answer: D

Explanation: Speed of train $P(S)=240 / 15=16 \mathrm{kmph}$
3. Answer: C

Explanation: Quantity I:

Difference of fourth and third year $(U)=4305.92$

Quantity II:

Anu received (T) =Rs. 6500

Quantity I < Quantity II

4. Answer: A

Explanation: Anu received (T) =Rs. 6500
$V=5000$

Lessons

Required difference $=6500-5000=$ Rs. 1500

5. Answer: A

Explanation: Difference of fourth and third year $(U)=4305.92$

6. Answer: A

Explanation [6-10]: Quantity I: If the ratio of the marked price of item 1 and item 4 in shop E is 15: 14, and the marked price of shop D in item 1 is Rs. 7000 . Find the selling price of item 4 in shop E?

Selling price of item 1 in shop $D=7000$ * [(100 -10)/100]
$=>7000 *(90 / 100)=$ Rs. 6300

Marked price of item 1 in shop $E=[6300 /(100-30)] * 100$
$=>6300 / 70 * 100=9000$

Marked price of item 4 in shop $E=9000 *(14 / 15)=8400$
Selling price of item 4 in shop $E=8400 *[(100-20) / 100]$
$=>8400 * 80 / 100=$ Rs. 6720
Quantity II: In item 2, if marked price in shop C is 25% more than the cost price and the profit percentage of shop C is 10% which is equal to 280 . Find the cost price of shop D if marked price of item 2 in shop D is 10% more than the cost price?

Profit of item 2 in shop $C=$ Rs. $280=10 \%$ of cost price of item 2 in shop C

Cost price of item 2 in shop $C=280^{*}(100 / 10)=2800$

Marked price of item 2 in shop $C=2800$ * [(100 +25)/100]
$=>2800 * 125 / 100=3500$
Selling price of item 2 in shop $C=3500 *(100-12) / 100$
$=>3500 *(88 / 100)=$ Rs. 3080
Marked price of item 2 in shop $D=3080$ * (100/(100-30))
$=>(3080 / 70) * 100=4400$
Cost price of item 2 in shop $D=(4400 / 110) * 100=$ Rs. 4000
7. Answer: C
8. Answer: C

Lessons
9. Answer: A
10. Answer: A
11. Answer: A

Explanation [11-15]: Match1:

Sachin score in Match1=60\%
Virat score in Match1=100 $=(100-60) \%=40 \%$
Sachin score in match1 $=100 *(60 / 40)=150$
Total score in Match1 $=100+150=250$

Match2:

Sachin score in match2=60\%
Virat score in match $2=40 \%$

TM

Difference $=60 \%-40 \%=20 \%=60$
$100 \%=300$
Sachin score in match2 $=60 \%=300 * 60 / 100=180$
Virat score in match $2=40 \%=300 * 40 / 100=120$

Match3:

Sachin score in match3 $=(3 / 1) * 48=144$
Virat score in Match3 $=(2 / 1) * 48=96$
Total score in match3 $=144+96=240$

Match4:

Sachin score in Match4=78
Virat score inmatch4 $=78-18=60$
Total score in match4=138

Match5:

Total Score in Match5 $=240 *(100 / 80)=300$
Sachin score in Match5 $=x-60$

LESSONS

Virat score in Match5 $=x$
$x+x-60=300$
$2 x=360$
$X=180$

Sachin score in Match5= 120

Virat score in Match5=180

From quantity I,

Average $=(150+180+144+78+120) / 5=134.4$

From quantity II,

Average $=(100+120+96+60+180) / 5=111.2$

Quantity I > Quantity II
12. Answer: A

Explanation: From Statement I,

Sachin score in Match6=180* (50/100) $=90$
Virat score in Match6=90* $(80 / 100)=72$
So, Statement I alone is sufficient to answer the question.

From Statement II,

Sachin scored 40\% runs in Match6.

So, Statement II alone is not sufficient to the answer the question.
13. Answer: A

Explanation: From quantity I,

Required percentage $=(180 / 240) * 100=75 \%$

From quantity II,

Required percentage $=(144 / 240) * 100=60 \%$
14. Answer: C

Explanation: Virat's score $=(100+120+96+60+180)=556$

Sum of Match4 and Match2 $=300+138=438$

Difference $=556-438=118$

15. Answer: A

Explanation: Average $=(250+300+240+138+300) / 5=245.6$
16. Answer: A

Explanation [16-20]: Total number of days taken by Swathi to complete Job $A=5 / 20 * 100=25$ days Total number of days taken by Shivani to complete

Job-A $=25 / 5 * 4=20$ days
Total number of days taken by Swathi to complete Job B =15/50*100 = 30 days
Total number of days taken by Shivani to complete
Job-B $=30 / 6 * 5=25$ days
Total number of days taken by Swathi to complete Job C $=12 / 40 * 100=30$ days
Total number of days taken by Shivani to complete
Job-C $=30 / 2 * 1=15$ days
Total number of days taken by Swathi to complete Job D =3/15*100 = 20 days
Total number of days taken by Shivani to complete
Job-D $=20 / 5 * 6=24$ days
Total number of days taken by Swathi to complete Job $\mathrm{E}=6 / 30 * 100=20$ days
Total number of days taken by Shivani to complete
Job-E $=20 / 5 * 4=16$ days

Job Name	Swathi	Shivani
A	25	20
B	30	25
C	30	15
D	20	24
E	20	16

17. Answer: C

Explanation: Statement I: Swathi and Shivani started working to complete Job- B with their 20\% and 25% less than the original efficiency respectively. The ratio of the number of days taken by Swathi and Shivani to complete Job-B is 3: 4. The difference between their wages is Rs. 300

LCM of 25 and $30=150$

Total work $=150$ units

Swathi's work per day $=5$ units
Swathi's 80% efficiency $=\frac{5 \times 80}{100}=4$ units
Shivani's work per day $=6$ units
Shivani's 75\% efficiency $=\frac{6 \times 75}{100}=4.5$ units
According to the question,
$(3 x * 4)+(4 x * 4.5)=150$
$12 x+18 x=150$
$30 x=150=>x=5$

Number of days worked by Swathi and Shivani is 15
and 20 days respectively.
Swathi's 15 days' work $=4 * 15=60$ units
Shivani's 20 days' work $=20 * 4.5=90$ units
Difference between the total units done Shivani and
Swathi $=90-60=30$ units

Amount received to complete 30 units of total work $=300$
Amount received to complete 150 units of total work $=\frac{300}{30} \times 150=$ Rs. 1500
Statement II: Shivani started working to complete Job-B. After 6 days swathi also joins with her and increased her efficiency by 20%. Swathi left the work 5 days before the work was completed and get Rs. 8400 as wage.

LCM of 25 and $30=150$

Total work $=150$ units

Shivani's work per day $=6$ units

Swathi's work per day $=5$ units
Swathi's 120% efficiency $=\frac{5 \times 120}{100}=6$ units
Total number of days worked by Shivani be x and

Swathi be $(x-11)$

According to the question,
$(x * 6)+((x-11) * 6)=150$
$6 x+6 x-66=150$
$12 x=216$

X = 18 days

Total work done by Shivani $=6 * 18=108$ units

Total work done by Swathi $=(18-11) * 6=42$ units

Amount received by Swathi to complete 42 units is 8400

Total amount to complete 150 units $=8400 / 42 * 150=$ Rs. 30000
18. Answer: B

Explanation: Statement I: Shivani started working to complete JobA and after 5 days Janani joins with her. The ratio of the number of days they worked to complete Job-A is 35: 12.

Here, there is no information about Janani's individual work. From that we cannot answer the given question.

Statement II: Sumi is 25% more efficient than Swathi to complete Job-A. They worked alternatively starting with Sumi to complete Job-A.

Efficiency ratio of Sumi to Swathi $=125: 100=5: 4$
Days ratio of Sumi to Swathi $=4: 5$
Number of days taken by Sumi alone to complete the whole work $=\left(\frac{25}{5}\right) * 4=20$ days
LCM of 25 and $20=100$

Total work = 100 units

Swathi's work per day $=\frac{100}{25}=4$ units
Sumi's work per day $=\frac{100}{20}=5$ units
Work done by Swathi and Sumi 2 days = 9 units
Work done by Swathi and Sumi 22 days = 9*11= 99 units
Remaining $=100-99=1$ unit
Required number of days $=22+\frac{1}{5}=22\left(\frac{1}{5}\right)$ days
19. Answer: B

Explanation: Statement I: Shivani and Krish started working to complete Job-D and the ratio of the number of days worked by Shivani to Krish is 5: 2.

Number of days worked by Shivani and Krish is $5 x$ and $2 x$ respectively.

Here, there is no information about Krish's individual work. From that we cannot answer the given question.

Statement II: Shivani and Krish completes the Job-B in ($\frac{375}{88}$) days less than the total number of days taken by Shivani and Swathi working together till the work completed.

LCM of 30 and $25=150$
Total work = 150 units

Swathi's per day work $=5$ units
Shivani's per day work $=6$ units
Total number of days taken by Swathi and Shivani to complete the whole work $=\frac{150}{11}$ days
Total number of days taken by Shivani and Krish to complete the whole work
$=\frac{150}{11}-\frac{375}{88}$
$=\frac{875}{88}$

Krish one day work $=\frac{88}{875}-{ }^{1} \underset{25}{\overline{2}} \quad \frac{11}{165}$
Statement II alone is sufficient to answer the given question.

LESSONS

20. Answer: E

Explanation: Statement I: Shivani started working to complete Job C and after 4 days, Janavi joins with him and after few days Janavi replaced by Kamali. The remaining work was completed in 5 days.

From question there is no information about Kamali and Janavi alone to complete the whole work.

Statement I alone is not sufficient to answer the given question.

Statement II: Janavi and Kamali started working together to complete Job-B and completed the work same as the number of days taken by Shivani and Swathi working together.

From question there is no information about Kamali and Janavi alone to complete the whole work.
Statement II alone is not sufficient to answer the given question.
21. Answer: A

Explanation: $\ln 2013=\left(\frac{80}{100}\right) \times 30000=24000$
In $2014=\left(\frac{65}{100}\right) \times 35000=22750$
In $2015=\left(\frac{82}{100}\right) \times 42000=34440$
In $2016=\left(\frac{78}{100}\right) \times 28000=21840$
In $2017=\left(\frac{85}{100}\right) \times 48000=40800$
Average $=\left(\frac{24000+22750+34440+21840+40800)}{5}\right)=28766$

22. Answer: C

Explanation: From Statement I,

Defective product in $2017=\left(\frac{80}{100}\right) *\left(\frac{18}{100}\right) * 42000=6048$
Non defective product in $2017=48000-6048=41952$

Required ratio $=6048: 41952=63: 437$

From Statement II,

Non defective product in 2017 $=\frac{30000}{2}=15000$
Defective product in $2017=48000-15000=33000$

Required ratio $=15000: 33000=5: 11$

Either I or II is sufficient to answer the question.

23. Answer: C

Explanation: From quantity I,

Product which is going to manufactured in $2018=\left(\frac{120}{100}\right) * 28000=33600$
Unsold product in $2018=\left(\frac{3}{7}\right) * 33600=14400$

From quantity II,

The non-defective product of the company in the year 2014
$=>\left(\frac{80}{100}\right)^{*}$ the number of product sold in 2013
$=>\left(\frac{80}{100}\right) * 30000 *\left(\frac{80}{100}\right)=19200$
Defective product in $2014=35000-19200=15800$
Number unsold product in $2018=15800$

Quantity I < Quantity II

24. Answer: B

Explanation: Difference of sold and unsold product in $2014=\left(\frac{30}{100}\right) * 35000=10500$
Difference of sold and unsold product in $2015=\left(\frac{64}{100}\right) * 42000=26880$
Sum $=10500+26880=37380$
Unsold product in $2017=\left(\frac{15}{100}\right) * 48000=7200$
Unsold product in $2016=\left(\frac{22}{100}\right) * 28000=6160$
Unsold product in $2013=\left(\frac{20}{100}\right) * 30000=6000$
Total $=7200+6160+6000=19360$
Required percentage $=\left[\frac{(37380-19360)}{19360}\right] * 100=93 \%$
25. Answer: C

Explanation: Average of products manufactured $=\left(\frac{35000+28000+48000}{3}\right)=37000$
26. Answer: C

Explanation: Let, required number of days $=\mathrm{n}$
$\frac{5}{25}+\frac{n}{30}+\frac{n}{50}=1$
$\frac{1}{5}+\frac{(5 n+3 n)}{150}=1$
$\frac{(8 \mathrm{n})}{150}=1-\frac{1}{5}$
$\frac{(8 n)}{150}=\frac{5-1}{5}$
$\mathrm{n}=\frac{150}{8} \times \frac{4}{5}$
$\mathrm{n}=15$ days
27. Answer: B

Explanation: Efficiency of Murali $=\frac{1}{35}$
Efficiency of Tinku $=\frac{1}{40}$
Efficiency of Surbhi $=\frac{1}{20}$
Efficiency of Sneha $=\frac{1}{40}$
Required ratio $=\left(\frac{1}{35}+=\frac{1}{40}\right):\left(\frac{1}{20}+=\frac{1}{40}\right)$
$=\frac{(8+7)}{280}: \frac{2+1}{40}$
$=\frac{15}{280}: \frac{3}{40}$
$=5: 7$
28. Answer: B

Explanation: Part of work done in 2 days $=\frac{1}{20}+\frac{1}{35}$
$=>$ Part of work done in 2 days $=\frac{(7+4)}{140}$
\Rightarrow Part of work done in 2 days $=\frac{11}{140}$
$=>$ Part of work done in 2×12 days $=\frac{11}{140} \times 12$
=> Part of work done in 24 days $=\frac{132}{140}=\frac{33}{35}$
Remaining work $=1-\frac{33}{35}=\frac{35-33}{35}=\frac{2}{35}$
Work done in 25 th day by Narayan $=\frac{1}{20}$
Remaining work $=\frac{2}{35}-\frac{1}{20}=\frac{8-7}{140}=\frac{1}{140}$

Remaining work will be done by Jiya.

Let, number of days taken by Jiya to complete the remaining part of the work $=\mathrm{n}$
$\frac{\mathrm{n}}{35}=\frac{1}{140}$
$\Rightarrow \mathrm{n}=\frac{35}{140}$
$\Rightarrow \mathrm{n}=\frac{1}{4}$
Hence, required number of days $=25\left(\frac{1}{4}\right)$ days
29. Answer: B

Explanation: Let, required number of days $=\mathrm{n}$
$\mathrm{N}\left(\frac{1}{20}+\frac{1}{40}+\frac{1}{35}+\frac{1}{30}+\frac{1}{50}\right)=1$
$=>n\left(\frac{210+105+120+140+84}{4200}\right)=1$
$\Rightarrow \mathrm{n}=\frac{4200}{659}$ Days
30. Answer: C

Explanation: Let, required number of days $=\mathrm{n}$
$\frac{4}{30}+\frac{4}{20}+\frac{n}{40}=1$
$\Rightarrow>\frac{2}{15}+\frac{1}{5}+\frac{n}{40}=1$
$\Rightarrow>\frac{\mathrm{n}}{40}=1-\frac{2}{15}-\frac{1}{5}$
$\Rightarrow>\frac{n}{40}=\frac{15-2-3}{15}$
$\Rightarrow \mathrm{n}=\frac{40 \times 10}{15}$
$\Rightarrow \mathrm{n}=\frac{80}{3}$ days
31. Answer: C

Explanation: Number of students in school $P=\frac{24}{100} \times 8000=1920$
Number of local students in school $P=\frac{5}{8} \times 1920=1200$
Number of local girls inschool $P=\frac{40}{100} \times 1200=480$
Number of local boys in school $P=1200-480=720$
Required difference $=720-480=240$

32. Answer: B

Explanation: Total number of students in school $Q=\frac{30}{100} \times 8000=2400$
Number of local students inschool $Q=\frac{3}{5} \times 2400=1440$
Total number of students in school $S=\frac{12}{100} \times 8000=960$
Number of non-local students in school $S=\frac{3}{4} \times 960=720$
Required ratio $=1440: 720=2: 1$
33. Answer: A

Explanation: Number of students in school $R=\frac{18}{100} \times 8000=1440$
Number of girls in school $R=\frac{4}{9} \times 1440=640$
Number of local students in school $R=\frac{5}{9} \times 1440=800$
Number of local girls inschool $R=\frac{60}{100} \times 800=480$
Number of non-local girls in school R $=640-480=160$
34. Answer: C

Explanation: Total number of students in school $T=\frac{16}{100} \times 8000=1280$
Number of local students in school $T=\frac{3}{8} \times 1280=480$
Total number of students in school $S=\frac{12}{x} x 000=960$

Number of local students in school $S=\frac{1}{4} \times 960=240$
Total number of students in school $P=\frac{24}{100} \times 8000=1920$
Number of local students in school $P=\frac{5}{8} \times 1920=1200$
Total number of local students in school T and school S together $=480+240=720$

Required percentage $=\frac{(1200-720)}{1200} \times 100$
$=\frac{480}{1200} \times 100$
= 40\% less

35. Answer: B

Explanation: Total number of students in school $P=\frac{24}{100} \times 8000=1920$
Number of non-local students in school $P=\frac{3}{8} \times 1920=720$
Total number of students in school $Q=\frac{30}{100} \times 8000=2400$
Number of non-local students in school $Q=\frac{2}{5} \times 2400=960$
Total number of students in school $R=\frac{18}{100} \times 8000=1440$
Number of non-local students in school $R=\frac{4}{9} \times 1440=640$
Total number of students in school $S=\frac{12}{100} \times 8000=960$
Number of non-local students in school $S=\frac{3}{4} \times 960=720$
Total number of students in school T $=\frac{16}{100} \times 8000=1280$
Number of non-local students in school T $=\frac{5}{8} \times 1280=800$
Required sum $=720+960+640+720+800=3840$
36. Answer: B

Explanation: Total mobiles exported by company D and $\mathrm{F}=35000^{*}$ 2
$=70000$
Mobile exported by company D in $2016=\frac{30}{100} * 35000=10500$

Mobile exported by company D in $2017=\frac{10500}{2}=5250$
Mobile exported by company F = 70000-5250 =64750
Percentage of production exported by company F in 2017
$=>\frac{64750}{90000} * 100=72 \%$
37. Answer: B

Explanation: Mobile exported by company E in $2017=$
$40000 * \frac{70}{100}=28000$
Mobile exported by company E in $2016=50000-28000=22000$
Required \% $=\left(\frac{22000}{80000}\right) * 100=27.5 \%$
38. Answer: D

Explanation: Total number of mobiles exported by company A in 2016 and 2017
$=>\left(\frac{40}{100}\right) * 20000+\left(\frac{60}{100}\right) * 50000$
$=>8000+30000=38000$

Mobile exported by company C in 2016 and 2017
$=>38000 *\left(\frac{3}{2}\right)=57000$
Mobile exported by company C in 2017
$=>57000-26000 *\left(\frac{20}{100}\right)$
$=>51800$
Percentage of export by company C in $2017=\frac{51800}{80000} * 100=64.75 \%$
39. Answer: D

Explanation: Number of defective mobiles exported by B in 2016
$=>45000 *\left(\frac{42}{100}\right) *\left(\frac{20}{100}\right)=3780$
Number of defective mobiles exported by company B in 2017
$=>\left(\frac{3780}{7}\right) * 5=2700$

Number of mobiles exported by company B
$=>\left(\frac{2700}{113.5}\right) * 100=20000$
Percentage of mobile exported by company B in 2017
$=>\left(\frac{20000}{30000}\right) * 100=66.67 \%$
40. Answer: C

Explanation: Mobile exported by A, B and D in 2016
$=>20000 *\left(\frac{40}{100}\right)+45000 *\left(\frac{42}{100}\right)+35000 *\left(\frac{30}{100}\right)$
$=>8000+18900+10500=37400$

Mobile exported by company A and E in 2017
$=>50000 *\left(\frac{60}{100}\right)+40000 *\left(\frac{70}{100}\right)$
$=>30000+28000=58000$
Required difference $=58000-37400=20600$
41. Answer: B

Explanation: Let C takes x hours to fill the cistern,
According to the question:
$\frac{4}{24}+\frac{4}{X}+\frac{5}{X}+\frac{5}{30}=1$
$=>\frac{19}{6}++\frac{1}{6} 1$
$=>\frac{2}{6}+\frac{9}{x}=1$
$=>\frac{1}{3}+\frac{9}{x}=1$
$=>\frac{9}{x}=1-\left(\frac{1}{3}\right.$
$=>\frac{9}{x}=\frac{2}{3}$
$=>x=\frac{27}{2}=13 \frac{1}{2}$ hours
C alone can fill the cistern in $13 \frac{1}{2}$ hours
42. Answer: D

Explanation: Let D should be closed after x hours, $\frac{x}{30}+\frac{x}{45}+\frac{20}{45} 1$
$=>(3 x+2 x) / 90=1-\left(\frac{4}{9}\right)$
$=>\frac{5 x 5}{90}=-$
$\Rightarrow x=10$ hours
D should be closed after 10 hours
43. Answer: D

Explanation: C takes half of the time taken by F to fill the cistern
$=>C: F=1: 2$

F takes half of the time taken by B to fill the cistern
$=>F: B=1: 2$

The ratio of C, F and B taken to fill the cistern $=1: 2: 4(x, 2 x, 4 x)$
According to the question:
$\frac{1}{x}+\frac{1}{2 x}+\frac{1}{4 x}=\frac{1}{48}$
$=>\frac{(4+2+1)}{4 x}=\frac{1}{48}$
$=>\frac{7}{4 x}=\frac{1}{48}$
$=>4 x=48^{*} 7$
$=>x=84$ hours

Time taken by F to fill the cistern $=2 * 84=168$ hours
44. Answer: B

Explanation: Part of the tank filled in 2 hours $=\frac{1}{24}+\frac{1}{30}=\frac{3}{40}$
$=>$ Part of the tank filled in 26 hours $=\left(\frac{3}{40}\right) * 13=$
39/40
Remaining part $=1-\frac{39}{40}=\frac{1}{40}$

Time taken by A to fill the remaining part,
$=>\left(\frac{1}{40}\right) * 24=\frac{3}{5}$
Total time $=26+\frac{3}{5}=26\left(\frac{3}{5}\right)$ hours
45. Answer:

Explanation: Let the time taken by F to fill the cistern be x ,
According to the question,
$\left(\underset{24}{\frac{1}{2}}+\left(\frac{1}{30}\right)+\left(\frac{1}{x}\right)=\left(\frac{1}{8}\right)\right.$
$\left(\underset{x}{1}=\left(\frac{1}{8}\right)-\left[\left(\frac{1}{24}\right)+\frac{1}{30}\right)\right]$
$\left(\underset{x}{1}=\left(\frac{1}{8}\right)-\left(\frac{3}{40}\right)\right.$
$\stackrel{1}{7}=\frac{2}{40}$
$\frac{1}{x}=\frac{1}{20}$
F alone to fill the cistern is 20 hours

46.Answer:

Explanation [46-50]:

Number of girls like Apple $=100$ - (Number of girls not like apple)
$=100-[100 *(20+15+20) \%]$
$=100-\left(\frac{100 \times 55}{100}\right)$
$=100-55=45$

From statement I,
Number of boys like Mango = 300- (Number of boys not like Mango)
$=300-[300 *(15+20+10) \%]$
$=300-\left(\frac{300 \times 45}{100}\right)$
$=300-135$
$=165$

Required ratio = 165: 45
$=11: 5$

Hence, Statement I alone is sufficient to answer the question

From statement II,

Number of boys like Mango = 300 - (Number of boys not like Mango)
$=300-[300 *(20+10+5+$ No of boys like Mango \& Apple but not Papaya) $]$

From that, we could not able to find the ratio because there is no information about the number of boys like Mango \& Apple but not Papaya.

Hence, Statement II alone is not sufficient to answer the question
47. Answer: D

Explanation: 20\% of girls like Mango and Apple and 15\% of girls like Only Apple. 50\% of boys like Mango.

Boys:

$(x+y+5 \%+10 \%)=50 \%$
$(x+y)=50 \%-15 \%=35 \%$
$=>z=100 \%-(10 \%+15 \%+5 \%+25 \%+35 \%)$
$=>z=100 \%-90 \%=10 \%$

Girls:

$(a+b)=20 \%$
$=>c=100 \%-(20 \%+15 \%+20 \%+15 \%+20 \%)$
$=>c=100 \%-90 \%=10 \%$

Quantity I: Find the number of boys like Apple and

Papaya but not Mango

Required total $=z=10 \%$ of 300
$=10 / 100 * 300=30$

Quantity II: Find the number of girls like Apple and

Papaya but not Mango
Required total $=c=10 \%$ of 100
$=10 / 100 * 100=10$

Quantity III: If the number of girls like Mango and Apple but not Papaya is 2 more than the number of girls like Apple and Papaya but not Mango, then find the number of girls like all the three fruits.

Number of girls like Mango and Apple $=20 / 100 * 100=20$
$(a+b)=20$

LESSONS

The number of girls like Mango and Apple but not Papaya $=2+$ the number of girls like Apple and Papaya but not Mango
$=>a=c+2$
$=>\mathrm{a}=\left(\frac{10}{100 \times 100}\right)+2$
$=>a=12$

Quantity I > Quantity II < Quantity III

48. Answer: A

Explanation: Number of boys like at least two fruits $=300$ - (Boys like only one fruit)
$=300-[300 *(20 \%+15 \%+25 \%)]$
$=300-\left(\frac{300 \times 60}{100}\right)$
$=300-180=120$
Number of girls like at least two fruits $=100$ - (Girls like only one fruit)
$=100-[100 *(20+15+20) \%]$
$=100-\left(\frac{100 \times 55}{100}\right)$
$=100-55=45$

Required difference $=120-45=75$
49. Answer: B

Explanation:

Train P covered $\left(3^{*} 40\right)=120 \mathrm{~km}$ at the end of 3 hours
Train Q covered $\left(3^{*} 60\right)=180 \mathrm{~km}$ at the end of 3 hours
50. Answer: D

Explanation:

Total distance $=\frac{480 \times 3}{40+60}=\frac{1440}{100}$
$=14.4$ hours (or) 14 hours 24 minutes

Stay Connected With SPNotifier

Quantitative Aptitude EBooks

Reasoning Ability EBooks

English Language EBooks

