Answers to Some Guestions in Excercises

UNIT 1

$1.11 \quad 106.57 \mathrm{u}$
$1.13 \quad 143.1 \mathrm{pm}$
$1.15 \quad 8.97 \mathrm{~g} \mathrm{~cm}^{-3}$
$1.16 \quad \mathrm{Ni}^{2+}=96 \%$ and $\mathrm{Ni}^{3+}=4 \%$
1.24 (i) $354 \mathrm{pm} \quad$ (ii) 2.26×10^{22} unit cells
$1.25 \quad 6.02 \times 10^{18}$ cation vacancies mol^{-1}

UNIT 2

$2.4 \quad 16.23 \mathrm{M}$
$2.6 \quad 157.8 \mathrm{~mL}$
$2.8 \quad 17.95 \mathrm{~m}$ and 9.10 M
$2.15 \quad 40.907 \mathrm{~g} \mathrm{~mol}^{-1}$
$2.17 \quad 12.08 \mathrm{kPa}$
$2.1923 \mathrm{~g} \mathrm{~mol}^{-1}, 3.53 \mathrm{kPa}$
$2.21 \mathrm{~A}=25.58 \mathrm{u}$ and $\mathrm{B}=42.64 \mathrm{u}$
2.24 KCl, $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CN}$, Cyclohexane
2.25 Toluene, chloroform; Phenol, Pentanol; Formic acid, ethylelne glycol
2.265 m
$2.27 \quad 2.45 \times 10^{-8} \mathrm{M}$
2.28 1.424\%
$2.30 \quad 4.575 \mathrm{~g}$
$2.33 \mathrm{i}=1.0753, \mathrm{~K}_{\mathrm{a}}=3.07 \times 10^{-3}$
2.35178×10^{-5}
$2.5 \quad 0.617 \mathrm{~m}, 0.01$ and $0.99,0.67$
2.7 33.5\%
$2.9 \quad 1.5 \times 10^{-3} \%, 1.25 \times 10^{-4} \mathrm{~m}$
$2.16 \quad 73.58 \mathrm{kPa}$
$2.18 \quad 10 \mathrm{~g}$
$2.20 \quad 269.07 \mathrm{~K}$
$2.22 \quad 0.061 \mathrm{M}$
$2.38 \quad 0.6$ and 0.4
$2.40 \quad 0.03 \mathrm{~mol}$ of CaCl_{2}
2.293 .2 g of water
$2.320 .65^{\circ}$
$2.34 \quad 17.44 \mathrm{~mm}$ Hg
$2.36 \quad 280.7$ torr, 32 torr
$2.39 x\left(\mathrm{O}_{2}\right) 4.6 \times 10^{-5}, x\left(\mathrm{~N}_{2}\right) 9.22 \times 10^{-5}$
$2.415 .27 \times 10^{-3} \mathrm{~atm}$.

UNIT 3

3.4 (i) $E^{\ominus}=0.34 \mathrm{~V}, \Delta_{\mathrm{r}} G^{\ominus}=-196.86 \mathrm{~kJ} \mathrm{~mol}^{-1}, K=3.124 \times 10^{34}$
(ii) $E^{\ominus}=0.03 \mathrm{~V}, \Delta_{\mathrm{r}} G^{\ominus}=-2.895 \mathrm{~kJ} \mathrm{~mol}^{-1}, K=3.2$
3.5 (i) 2.68 V , (ii) 0.53 V , (iii) 0.08 V , (iv) -1.298 V
$3.6 \quad 1.56 \mathrm{~V}$
$3.8 \quad 124.0 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$3.9 \quad 0.219 \mathrm{~cm}^{-1}$
$3.11 \quad 1.85 \times 10^{-5}$
3.12 3F, 2F, 5F
$3.131 \mathrm{~F}, 4.44 \mathrm{~F}$
3.14 2F, 1F
$3.15 \quad 1.8258 \mathrm{~g}$
$3.16 \quad 14.40 \mathrm{~min}$, Copper 0.427 g , Zinc 0.437 g

UNIT 4

4.2 (i) $8.0 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} ; 3.89 \times 10^{-9} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$4.4 \mathrm{bar}^{-1 / 2} \mathrm{~s}^{-1}$
4.6 (i) 4 times
(ii) $1 / 4$ times
4.8 (i) $4.67 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(ii) $1.98 \times 10^{-2} \mathrm{~s}^{-1}$
4.9 (i) rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
(ii) 9 times
4.10 Orders with respect to A is 1.5 and order with respect to B is zero.
4.11 rate law $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$; rate constant $=6.0 \mathrm{M}^{-2} \mathrm{~min}^{-1}$
4.13 (i) 3.47×10^{-3} seconds (ii) 0.35 minutes (iii) 0.173 years
4.141845 years
$4.17 \quad 0.7814 \mu \mathrm{~g}$ and $0.227 \mu \mathrm{~g}$.
$4.164 .6 \times 10^{-2} \mathrm{~s}$
$4.20 \quad 2.20 \times 10^{-3} \mathrm{~s}^{-1}$
4.1977 .7 minutes
$4.23 \quad 3.9 \times 10^{12} \mathrm{~s}^{-1}$
$4.212 .23 \times 10^{-3} \mathrm{~s}^{-1}, 7.8 \times 10^{-4} \mathrm{~atm} \mathrm{~s}^{-1}$
$4.25 \quad 0.158 \mathrm{M}$
4.240 .135 M
$4.26232 .79 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4.27 \quad 239.339 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$4.2824^{\circ} \mathrm{C}$
$4.29 \quad \mathrm{E}_{\mathrm{a}}=76.750 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}, \quad k=0.9965 \times 10^{-2} \mathrm{~s}^{-1}$
$4.30 \quad 52.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

UNIT 6

6.1 Zinc is highly reactive metal, it may not be possible to replace it from a solution of ZnSO_{4} so easily.
6.2 It prevents one of the components from forming the froth by complexation.
6.3 The Gibbs energies of formation of most sulphides are greater than that for CS_{2}. In fact, CS_{2} is an endothermic compound. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.
6.5 CO
6.6 Selenium, tellurium, silver, gold are the metals present in anode mud. This is because these are less reactive than copper.
6.9 Silica removes $\mathrm{Fe}_{2} \mathrm{O}_{3}$ remaining in the matte by forming silicate, FeSiO_{3}.
6.15 Cast iron is made from pig iron by melting pig iron with scrap iron and coke. It has slightly lower carbon content (" 3%) than pig iron (4% C)
6.17 To remove basic impurities, like $\mathrm{Fe}_{2} \mathrm{O}_{3}$
6.18 To lower the melting point of the mixture.
6.20 The reduction may require very high temperature if CO is used as a reducing agent in this case.
6.21 Yes, $2 \mathrm{Al}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \quad \Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=-827 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{Cr}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3} \quad \Delta_{\mathrm{r}} \mathrm{G}^{\ominus}=-540 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Hence $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr} \quad-827-(-540)=-287 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$
6.22 Carbon is better reducing agent.
6.25 Graphite rods act as anode and get burnt away as CO and CO_{2} during the process of electrolysis.
6.28 Above 1600 K Al can reduce MgO .

UNIT 7

7.10 Because of inability of nitrogen to expand its covalency beyond 4.
7.20 Freons
7.22 It dissolves in rain water and produces acid rain.
7.23 Due to strong tendency to accept electrons, halogens act as strong oxidising agent.
7.24 Due to high electronegativity and small size, it cannot act as central atom in higher oxoacids.
7.25 Nitrogen has smaller size than chlorine. Smaller size favours hydrogen bonding.
7.30 Synthesis of $\mathrm{O}_{2} \mathrm{PtF}_{6}$ inspired Bartlett to prepare XePtF_{6} as Xe and oxygen have nearly same ionisation enthalpies.
7.31 (i) +3 (ii) +3 (iii) $-3 \quad$ (iv) $+5 \quad$ (v) +5
7.34 ClF , Yes.
7.36 (i) $\mathrm{I}_{2}<\mathrm{F}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2}$
(ii) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
(iii) $\mathrm{BiH}_{3} \leq \mathrm{SbH}_{3}<\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
7.37 (ii) NeF_{2}
7.38 (i) XeF_{4}
(ii) XeF_{2}
(iii) XeO_{3}

UNIT 8

8.2 It is because Mn^{2+} has $3 d^{5}$ configuration which has extra stability.
8.5 Stable oxidation states.
$3 d^{3}$ (Vanadium): $(+2),+3,+4$, and +5
$3 d^{5}$ (Chromium): $+3,+4,+6$
$3 d^{5}$ (Manganese): $+2,+4,+6,+7$
$3 d^{8}$ (Nickel): +2 , +3 (in complexes)
$3 d^{4}$ There is no d^{4} configuration in the ground state.
8.6 Vanadate VO_{3}^{-}, chromate CrO_{4}^{2-}, permanganate MnO_{4}^{-}
$8.10+3$ is the common oxidation state of the lanthanoids
In addition to +3 , oxidation states +2 and +4 are also exhibited by some of the lanthanoids.
8.13 In transition elements the oxidation states vary from +1 to any highest oxidation state by one For example, for manganese it may vary as $+2,+3,+4,+5,+6,+7$. In the nontransition elements the variation is selective, always differing by 2 , e.g. $+2,+4$, or $+3,+5$ or $+4,+6$ etc.
8.18 Except Sc^{3+}, all others will be coloured in aqueous solution because of incompletely filled $3 d$-orbitals, will give rise to d - d transitions.
8.21 (i) Cr^{2+} is reducing as it involves change from d^{4} to d^{3}, the latter is more stable configuration ($\mathrm{t}_{2 \mathrm{~g}}^{3}$) $\mathrm{Mn}(\mathrm{III})$ to $\mathrm{Mn}(\mathrm{II})$ is from $3 d^{4}$ to $3 d^{5}$ again $3 d^{5}$ is an extra stable configuration.
(ii) Due to CFSE, which more than compensates the $3^{\text {rd }}$ IE.
(iii) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^{1}.
8.23 Copper, because with +1 oxidation state an extra stable configuration, $3 d^{10}$ results.
8.24 Unpaired electrons $\mathrm{Mn}^{3+}=4, \mathrm{Cr}^{3+}=3, \mathrm{~V}^{3+}=2, \mathrm{Ti}^{3+}=1$. Most stable Cr^{3+}
8.28 Second part 59, 95, 102.
8.30 Lawrencium, 103, +3
$8.36 \mathrm{Ti}^{2+}=2, \mathrm{~V}^{2+}=3, \mathrm{Cr}^{3+}=3, \mathrm{Mn}^{2+}=5, \mathrm{Fe}^{2+}=6, \mathrm{Fe}^{3+}=5, \mathrm{CO}^{2+}=7, \mathrm{Ni}^{2+}=8, \mathrm{Cu}^{2+}=9$
8.38 $\mathrm{M} \sqrt{\mathrm{n}(\mathrm{n}+2)}=2.2, \mathrm{n} \approx 1, d^{2} \mathrm{sp}^{3}, \mathrm{CN}^{-}$strong ligand
$=5.3, \mathrm{n} \approx 4, \mathrm{sp}^{3}, d^{2}, \mathrm{H}_{2} \mathrm{O}$ weak ligand
$=5.9, \mathrm{n} \approx 5, \mathrm{sp}^{3}, \mathrm{Cl}^{-}$weak ligand.

UNIT 9

9.5
(i) +3
(ii) +3
(iii) +2
(iv) +3
(v) +3
9.6
(i) $\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
(ii) $\mathrm{K}_{2}\left[\mathrm{PdCl}_{4}\right]$
(v) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right]^{2+}$
(vi) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(iii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(iv) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
(ix) $\left[\mathrm{CuBr}_{4}\right]^{2-}$
(x) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
(vii) $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(viii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{6}\right]^{4+}$
9.9 (i) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3^{\prime \prime}-} \mathrm{Nil}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{-}$Two (fac- and mer-)
9.12 Three (two cis and one trans)
9.13 Aqueous CuSO_{4} solution exists as $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4}$ which has blue colour due to $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ ions.
(i) When KF is added, the weak $\mathrm{H}_{2} \mathrm{O}$ ligands are replaced by F^{-}ligands, forming $\left[\mathrm{CuF}_{4}\right]^{2 /}$ ions which is a green precipitate.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{~F}^{-} \rightarrow\left[\mathrm{CuF}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
(ii) When KCl is added, Cl^{-}ligands replace the weak $\mathrm{H}_{2} \mathrm{O}$ ligands forming $\left[\mathrm{CuCl}_{4}\right)^{2-}$ ions which has bright green colour.
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
$9.14 \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} 4^{2+}+4 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}\right.$
As CN^{-}is a strong ligand, it forms a highly stable complex with Cu^{2+} ion. On passing $\mathrm{H}_{2} \mathrm{~S}$, free Cu^{2+} ions are not available to form the precipitate of CuS .
9.23 (i) $\mathrm{OS}=+3, \mathrm{CN}=6$, d-orbital occupation is $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} \mathrm{e}_{\mathrm{g}}{ }^{0}$,
(ii) $\mathrm{OS}=+3, \mathrm{CN}=6, \mathrm{~d}^{3}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3}\right)$,
(iii) $\mathrm{OS}=+2, \mathrm{CN}=4, \mathrm{~d}^{7}\left(\mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}{ }^{2}\right)$,
(iv) $\mathrm{OS}=+2, \mathrm{CN}=6, \mathrm{~d}^{5}\left(\mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{2}\right)$.
9.28 (iii)
9.29 (ii)
9.30 (iii)
9.31 (iii)
9.32 (i) The order of the ligand in the spectrochemical series :
$\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NO}_{2}^{-}$
Hence the energy of the observed light will be in the order :
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{l}^{2+}<\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}\right.$
Thus, wavelengths absorbed $(\mathrm{E}=\mathrm{hc} / \lambda)$ will be in the opposite order.

