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Figure 6.7 Meselson and Stahl’s Experiment

and human cells. Matthew Meselson and Franklin Stahl performed the

following experiment in 1958:

(i) They grew E. coli in a medium containing 15NH
4
Cl (15N is the heavy

isotope of nitrogen) as the only nitrogen source for many

generations. The result was that 15N was incorporated into newly

synthesised DNA (as well as other nitrogen containing compounds).

This heavy DNA molecule could be distinguished from the normal

DNA by centrifugation in a cesium chloride (CsCl) density gradient

(Please note that 15N is not a radioactive isotope, and it can be

separated from 14N only based on densities).

(ii) Then they transferred the cells into a medium with normal
14NH

4
Cl and took samples at various definite time intervals as

the cells multiplied, and extracted the DNA that remained as

double-stranded helices.  The various samples were separated

independently on CsCl gradients to measure the densities of

DNA (Figure 6.7).

Can you recall what centrifugal force is, and think why a

molecule with higher mass/density would sediment faster?

The results are shown in Figure 6.7.

(iii) Thus, the DNA that was extracted from the culture one

generation after the transfer from 15N to 14N medium [that is

after 20 minutes; E. coli divides in 20 minutes] had a hybrid or

intermediate density.  DNA extracted from the culture after

another generation [that is after 40 minutes, II generation] was
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composed of equal amounts of this hybrid DNA and of ‘light’

DNA.

If E. coli was allowed to grow for 80 minutes then what would be the

proportions of light and hybrid densities DNA molecule?

Very similar experiments involving use of radioactive thymidine to

detect distribution of newly synthesised DNA in the chromosomes was

performed on Vicia faba (faba beans) by Taylor and colleagues in 1958.

The experiments proved that the DNA in chromosomes also replicate

semiconservatively.

6.4.2 The Machinery and the Enzymes

 In living cells, such as E. coli, the process of replication requires a set of

catalysts (enzymes).  The main enzyme is referred to as DNA-dependent

DNA polymerase, since it uses a DNA template to catalyse the

polymerisation of deoxynucleotides. These enzymes are highly efficient

enzymes as they have to catalyse polymerisation of a large number of

nucleotides in a very short time. E. coli that has only 4.6 ×106 bp (compare

it with human whose diploid content is 6.6 × 109 bp), completes the

process of replication within 18 minutes; that means the average rate of

polymerisation has to be approximately 2000 bp per second. Not only do

these polymerases have to be fast, but they also have to catalyse the reaction

with high degree of accuracy.  Any mistake during replication would result

into mutations.  Furthermore, energetically replication is a very expensive

process. Deoxyribonucleoside triphosphates serve dual purposes. In

addition to acting as substrates, they provide energy for polymerisation

reaction (the two terminal phosphates in a deoxynucleoside triphosphates

are high-energy phosphates, same as in case of ATP).

In addition to DNA-dependent DNA polymerases, many additional

enzymes are required to complete the process of replication with high

degree of accuracy.  For long DNA molecules, since the two strands of

DNA cannot be separated in its entire length (due to very high energy

requirement), the replication occur within a small opening of the DNA

helix, referred to as replication fork. The DNA-dependent DNA

polymerases catalyse polymerisation only in one direction, that is 5'à3' .

This creates some additional complications at the replicating fork.

Consequently, on one strand (the template with polarity 3'à5' ), the

replication is continuous, while on the other (the template with

polarity 5'à3' ), it is discontinuous. The discontinuously synthesised

fragments are later joined by the enzyme DNA ligase (Figure 6.8).

The DNA polymerases on their own cannot initiate the process of

replication.  Also the replication does not initiate randomly at any place

in DNA. There is a definite region in E. coli DNA where the replication

originates. Such regions are termed as origin of replication. It is
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because of the requirement of the origin of

replication that a piece of DNA if needed to be

propagated during recombinant DNA procedures,

requires a vector. The vectors provide the origin of

replication.

Further, not every detail of replication is

understood well.  In eukaryotes, the replication of

DNA takes place at S-phase of the cell-cycle.  The

replication of DNA and cell division cycle should be

highly coordinated. A failure in cell division after

DNA replication results into polyploidy(a

chromosomal anomaly). You will learn the detailed

nature of origin and the processes occurring at this

site, in higher classes.

6.5 TRANSCRIPTION

The process of copying genetic information from one

strand of the DNA into RNA is termed as

transcription. Here also, the principle of

complementarity governs the process of transcription, except the adenosine

complements now forms base pair with uracil instead of thymine.  However,

unlike in the process of replication, which once set in, the total DNA of an

organism gets duplicated, in transcription only a segment of DNA and

only one of the strands is copied into RNA.  This necessitates defining the

boundaries that would demarcate the region and the strand of DNA that

would be transcribed.

Why both the strands are not copied during transcription has the

simple answer. First, if both strands act as a template, they would code

for RNA molecule with different sequences (Remember complementarity

does not mean identical), and in turn, if they code for proteins, the sequence

of amino acids in the proteins would be different. Hence, one segment of

the DNA would be coding for two different proteins, and this would

complicate the genetic information transfer machinery. Second, the two

RNA molecules if produced simultaneously would be complementary to

each other, hence would form a double stranded RNA. This would prevent

RNA from being translated into protein and the exercise of transcription

would become a futile one.

6.5.1 Transcription Unit

A transcription unit in DNA is defined primarily by the three regions in

the DNA:

(i) A Promoter

(ii) The Structural gene

(iii) A Terminator

Figure 6.8 Replicating Fork
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There is a convention in defining the two strands of the DNA in the

structural gene of a transcription unit.  Since the two strands have opposite

polarity and the DNA-dependent RNA polymerase also catalyse the

polymerisation in only one direction, that is, 5'→3' , the strand that has

the polarity 3'→5'  acts as a template, and is also referred to as template

strand. The other strand which has the polarity (5'→3' ) and the sequence

same as RNA (except thymine at the place of uracil), is displaced during

transcription.  Strangely, this strand (which does not code for anything)

is referred to as coding strand.  All the reference point while defining a

transcription unit is made with coding strand. To explain the point, a

hypothetical sequence from a transcription unit is represented below:

3'-ATGCATGCATGCATGCATGCATGC-5'    Template Strand

5'-TACGTACGTACGTACGTACGTACG-3'    Coding Strand

Can you now write the sequence of RNA transcribed from the above DNA?

Figure 6.9 Schematic structure of a transcription unit

The promoter and terminator flank the structural gene in a

transcription unit.  The promoter is said to be located towards 5'-end

(upstream) of the structural gene (the reference is made with respect to

the polarity of coding strand).  It is a DNA sequence that provides binding

site for RNA polymerase, and it is the presence of a promoter in a

transcription unit that also defines the template and coding strands.  By
switching its position with terminator, the definition of coding and template

strands could be reversed. The terminator is located towards 3'-end

(downstream) of the coding strand and it usually defines the end of the
process of transcription (Figure 6.9). There are additional regulatory
sequences that may be present further upstream or downstream to the
promoter.  Some of the properties of these sequences shall be discussed
while dealing with regulation of gene expression.

6.5.2 Transcription Unit and the Gene

A gene is defined as the functional unit of inheritance. Though there is no
ambiguity that the genes are located on the DNA, it is difficult to literally
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define a gene in terms of DNA sequence. The DNA sequence coding for
tRNA or rRNA molecule also define a gene. However by defining a cistron

as a segment of DNA coding for a polypeptide, the structural gene in a
transcription unit could be said as monocistronic (mostly in eukaryotes)
or polycistronic (mostly in bacteria or prokaryotes). In eukaryotes, the
monocistronic structural genes have interrupted coding sequences – the
genes in eukaryotes are split. The coding sequences or expressed
sequences are defined as exons. Exons are said to be those sequence
that appear in mature or processed RNA.  The exons are interrupted by
introns.  Introns or intervening sequences do not appear in mature or
processed RNA. The split-gene arrangement further complicates the
definition of a gene in terms of a DNA segment.

Inheritance of a character is also affected by promoter and regulatory
sequences of a structural gene.  Hence, sometime the regulatory sequences
are loosely defined as regulatory genes, even though these sequences do

not code for any RNA or protein.

6.5.3 Types of RNA and the process of Transcription

In bacteria, there are three major types of RNAs: mRNA (messenger RNA),

tRNA (transfer RNA), and rRNA (ribosomal RNA).  All three RNAs are

needed to synthesise a protein in a cell.  The mRNA provides the template,

tRNA brings aminoacids and reads the genetic code, and rRNAs play

structural and catalytic role during translation. There is single

DNA-dependent RNA polymerase that catalyses transcription of all types

of RNA in bacteria. RNA polymerase binds to promoter and initiates

transcription (Initiation). It uses nucleoside triphosphates as substrate

 Figure 6.10 Process of Transcription in Bacteria
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and polymerises in a template depended fashion following the rule of

complementarity.  It somehow also facilitates opening of the helix and

continues elongation.  Only a short stretch of RNA remains bound to the

enzyme. Once the polymerases reaches the terminator region, the nascent

RNA falls off, so also the RNA polymerase.  This results in termination of

transcription.

An intriguing question is that how is the RNA polymerases able

to catalyse all the three steps, which are initiation, elongation and

termination.  The RNA polymerase is only capable of catalysing the

process of elongation.  It associates transiently with initiation-factor (σ)

and termination-factor (ρ) to initiate and terminate the transcription,

respectively. Association with these factors alter the specificity of the

RNA polymerase to either initiate or terminate (Figure 6.10).

In bacteria, since the mRNA does not require any processing to become

active, and also since transcription and translation take place in the same

compartment (there is no separation of cytosol and nucleus in bacteria),

many times the translation can begin much before the mRNA is fully

transcribed. Consequently, the transcription and translation can be coupled

in bacteria.

In eukaryotes, there are two additional complexities –

(i) There are at least three RNA polymerases in the nucleus (in addition

to the RNA polymerase found in the organelles). There is a clear

cut division of labour. The RNA polymerase I transcribes rRNAs

Figure 6.11 Process of Transcription in Eukaryotes
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(28S, 18S, and 5.8S), whereas the RNA polymerase III is responsible

for transcription of tRNA, 5srRNA, and snRNAs (small nuclear

RNAs). The RNA polymerase II transcribes precursor of mRNA, the

heterogeneous nuclear RNA (hnRNA).

(ii) The second complexity is that the primary transcripts contain both

the exons and the introns and are non-functional. Hence, it is

subjected to a process called splicing where the introns are removed

and exons are joined in a defined order. hnRNA undergoes

additional processing called as capping and tailing. In capping an

unusual nucleotide (methyl guanosine triphosphate) is added to

the 5'-end of hnRNA. In tailing, adenylate residues (200-300) are

added at 3'-end in a template independent manner. It is the fully

processed hnRNA, now called mRNA, that is transported out of the

nucleus for translation (Figure 6.11).

The significance of such complexities is now beginning to be

understood.  The split-gene arrangements represent probably an ancient

feature of the genome.  The presence of introns is reminiscent of antiquity,

and the process of splicing represents the dominance of RNA-world.  In

recent times, the understanding of RNA and RNA-dependent processes

in the living system have assumed more importance.

6.6  GENETIC CODE

During replication and transcription a nucleic acid was copied to form

another nucleic acid. Hence, these processes are easy to conceptualise

on the basis of complementarity. The process of translation requires

transfer of genetic information from a polymer of nucleotides to synthesise

a polymer of amino acids. Neither does any complementarity exist between

nucleotides and amino acids, nor could any be drawn theoretically. There

existed ample evidences, though, to support the notion that change in

nucleic acids (genetic material) were responsible for change in amino acids

in proteins.  This led to the proposition of a genetic code that could direct

the sequence of amino acids during synthesis of proteins.

If determining the biochemical nature of genetic material and the

structure of DNA was very exciting, the proposition and deciphering of

genetic code were most challenging. In a very true sense, it required

involvement of scientists from several disciplines – physicists, organic

chemists, biochemists and geneticists. It was George Gamow, a physicist,

who argued that since there are only 4 bases and if they have to code for

20 amino acids, the code should constitute a combination of bases. He

suggested that in order to code for all the 20 amino acids, the code should

be made up of three nucleotides. This was a very bold proposition, because

a permutation combination of 43 (4 × 4 × 4) would generate 64 codons;

generating many more codons than required.

Providing proof that the codon was a triplet, was a more daunting

task. The chemical method developed by Har Gobind Khorana was
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instrumental in synthesising RNA molecules with defined combinations

of bases (homopolymers and copolymers). Marshall Nirenberg’s cell-free

system for protein synthesis finally helped the code to be deciphered.

Severo Ochoa enzyme (polynucleotide phosphorylase) was also helpful

in polymerising RNA with defined sequences in a template independent

manner (enzymatic synthesis of RNA). Finally a checker-board for genetic

code was prepared which is given in Table 6.1.

Table 6.1: The Codons for the Various Amino Acids

The salient features of genetic code are as follows:

(i) The codon is triplet. 61 codons code for amino acids and 3 codons do

not code for any amino acids, hence they function as stop codons.

(ii) Some amino acids are coded by more than one codon, hence

the code is degenerate.

(iii) The codon is read in mRNA in a contiguous fashion. There are

no punctuations.

(iv) The code is nearly universal: for example, from bacteria to human

UUU would code for Phenylalanine (phe). Some exceptions to this

rule have been found in mitochondrial codons, and in some

protozoans.

(v) AUG has dual functions. It codes for Methionine (met) , and it

also act as initiator codon.

(vi) UAA, UAG, UGA are stop terminator codons.

If following is the sequence of nucleotides in mRNA, predict the

sequence of amino acid coded by it (take help of the checkerboard):

-AUG UUU UUC UUC UUU UUU UUC-
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Now try the opposite.  Following is the sequence of amino acids coded

by an mRNA. Predict the nucleotide sequence in the RNA:

Met-Phe-Phe-Phe-Phe-Phe-Phe

Do you face any difficulty in predicting the opposite?

Can you now correlate which two properties of genetic code you have

learnt?

6.6.1 Mutations and Genetic Code

The relationships between genes and DNA are best understood by mutation

studies. You have studied about mutation and its effect in Chapter  5.  Effects

of large deletions and rearrangements in a segment of DNA are easy to

comprehend.  It may result in loss or gain of a gene and so a function.  The

effect of point mutations will be explained here.  A classical example of

point mutation is a change of single base pair in the gene for beta globin

chain that results in the change of amino acid residue glutamate to valine.

It results into a diseased condition called as sickle cell anemia. Effect of

point mutations that inserts or deletes a base in structural gene can be

better understood by following simple example.

Consider a statement that is made up of the following words each

having three letters like genetic code.

RAM  HAS  RED  CAP

If we insert a letter B in between HAS and RED and rearrange the

statement, it would read as follows:

RAM  HAS  BRE  DCA  P

Similarly, if we now insert two letters at the same place, say BI'. Now it

would read,

RAM  HAS  BIR  EDC  AP

Now we insert three letters together, say BIG, the statement would read

RAM  HAS  BIG  RED  CAP

The same exercise can be repeated, by deleting the letters R, E and D,

one by one and rearranging the statement to make a triplet word.

RAM  HAS  EDC  AP

RAM  HAS  DCA  P

RAM  HAS  CAP

The conclusion from the above exercise is very obvious. Insertion or

deletion of one or two bases changes the reading frame from the point of

insertion or deletion. However, such mutations are referred to as
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frameshift insertion or deletion mutations. Insertion or deletion of

three or its multiple bases insert or delete in one or multiple codon hence

one or multiple amino acids, and reading frame remains unaltered from

that point onwards.

6.6.2 tRNA– the Adapter Molecule

From the very beginning of the proposition of code, it was clear to Francis

Crick that there has to be a mechanism to read the code and also to link it

to the amino acids, because amino acids have no structural specialities to

read the code uniquely.  He postulated the presence of an adapter molecule

that would on one hand read the code and on other hand would bind

to specific amino acids. The tRNA, then called sRNA (soluble RNA),

was known before the genetic code was postulated. However, its role

as an adapter molecule was assigned much later.

tRNA has an

anticodon loop

that has bases

complementary to

the code, and it also

has an amino acid

acceptor  end to

which it binds to

amino acids.

tRNAs are specific

for each amino acid

(Figure 6.12).  For

initiation, there is

another specific tRNA that is referred to as initiator tRNA. There are no

tRNAs for stop codons.  In figure 6.12, the secondary structure of tRNA

has been depicted that looks like a clover-leaf. In actual structure, the

tRNA is a compact molecule which looks like inverted L.

6.7  TRANSLATION

Translation refers to the process of polymerisation of amino acids to

form a polypeptide (Figure 6.13). The order and sequence of amino acids

are defined by the sequence of bases in the mRNA. The amino acids are

joined by a bond which is known as a peptide bond.  Formation of a

peptide bond requires energy.  Therefore, in the first phase itself amino

acids are activated in the presence of ATP and linked to their cognate

tRNA –a process commonly called as charging of tRNA or

aminoacylation of tRNA to be more specific.  If two such charged tRNAs

are brought close enough, the formation of peptide bond between them

Figure 6.12 tRNA - the adapter molecule

2019-2020


