PRINCIPLES OF INHERITANCE AND VARIATION

S.No.	Characters	Contrasting Traits
1.	Stem height	Tall/dwarf
2.	Flower colour	Violet/white
З.	Flower position	Axial/terminal
4.	Pod shape	Inflated/constricted
5.	Pod colour	Green/yellow
6.	Seed shape	Round/wrinkled
7.	Seed colour	Yellow/green

Table 5.1: Contrasting Traits Studied by Mendel in Pea

5.2 INHERITANCE OF ONE GENE

Let us take the example of one such hybridisation experiment carried out by Mendel where he crossed tall and dwarf pea plants to study the inheritance of one gene (Figure 5.2). He collected the seeds produced as a result of this cross and grew them to generate plants of the first hybrid generation. This generation is also called the **Filial**, **progeny** or the \mathbf{F}_1 . Mendel observed that all the F_1 progeny plants were tall, like one of its parents; none were dwarf (Figure 5.3). He made similar observations for the other pairs of traits - he found that the F, always resembled either one of the parents, and that the trait of the other parent was not seen in them.

Mendel then self-pollinated the tall F_1 plants and to his surprise found that in the Filial₂ generation some of the offspring were 'dwarf'; the character that was not seen in the F_1 generation was now expressed. The proportion of plants that were dwarf were

Petal Stigma Anther Stamen Carpel Removal of anthers (Emasculation) Parent Q Parent Transfer of pollen (Pollination)

 $1/4^{\text{th}}$ of the F_2 plants while $3/4^{\text{th}}$ of the F_2 plants were tall. The tall and dwarf traits were identical to their parental type and did not show any blending, that is all the offspring were either tall or dwarf, none were of inbetween height (Figure 5.3).

Similar results were obtained with the other traits that he studied: only one of the parental traits was expressed in the F_1 generation while at the F_2 stage both the traits were expressed in the proportion 3:1. The contrasting traits did not show any blending at either F_1 or F_2 stage. 71

igure 5.3 Diagrammatic representation of monohybrid cross

Based on these observations, Mendel proposed that something was being stably passed down, unchanged, from parent to offspring through the gametes, over successive generations. He called these things as 'factors'. Now we call them as genes. Genes, therefore, are the units of inheritance. They contain the information that is required to express a particular trait in an organism. Genes which code for a pair of contrasting traits are known as **alleles**, i.e., they are slightly different forms of the same gene.

BIOLOGY

If we use alphabetical symbols for each gene, then the capital letter is used for the trait expressed at the F_1 stage and the small alphabet for the other trait. For example, in case of the character of height, **T** is used for the Tall trait and **t** for the 'dwarf', and **T** and **t** are alleles of each other. Hence, in plants the pair of alleles for height would be **TT**, **Tt** or **tt**. Mendel also proposed that in a true breeding, tall or dwarf pea variety the allelic pair of genes for height are

identical or **homozygous**, **TT** and **tt**, respectively. **TT** and **tt** are called the **genotype** of the plant while the descriptive terms **tall** and **dwarf** are the **phenotype**. What then would be the phenotype of a plant that had a genotype **Tt**?

As Mendel found the phenotype of the F_1 heterozygote **Tt** to be exactly like the **TT** parent in appearance, he proposed that in a pair of dissimilar factors, one dominates the other (as in the F_1) and hence is called the **dominant** factor while the other factor is **recessive**. In this case **T** (for tallness) is dominant over **t** (for dwarfness), that is recessive. He observed identical behaviour for all the other characters/trait-pairs that he studied.

It is convenient (and logical) to use the capital and lower case of an alphabetical symbol to remember this concept of dominance and recessiveness. (Do not use **T** for tall and **d** for dwarf because you will find it difficult to remember whether **T** and **d** are alleles of the same gene/character or not). Alleles can be similar as in the case of homozygotes **TT** and **tt** or can be dissimilar as in the case of the heterozygote **Tt**. Since

PRINCIPLES OF INHERITANCE AND VARIATION

the **Tt** plant is heterozygous for genes controlling one character (height), it is a **monohybrid** and the cross between **TT** and **tt** is a **monohybrid cross**.

From the observation that the recessive parental trait is expressed without any blending in the F_{a} generation, we can infer that, when the tall and dwarf plant produce gametes, by the process of meiosis, the alleles of the parental pair separate or **segregate** from each other and only one allele is transmitted to a gamete. This segregation of alleles is a random process and so there is a 50 per cent chance of a gamete containing either allele, as has been verified by the results of the crossings. In this way the gametes of the tall **TT** plants have the allele **T** and the gametes of the dwarf **tt** plants have the allele **t**. During fertilisation the two alleles, **T** from one parent say, through the pollen, and **t** from the other parent, then through the egg, are united to produce zygotes that have one **T** allele and one **t** allele. In other words the hybrids have **Tt**. Since these hybrids contain alleles which express contrasting traits, the plants are **heterozygous**. The production of gametes by the parents, the formation of the zygotes, the F_1 and F_2 plants can be understood from a diagram called Punnett Square as shown in Figure 5.4. It was developed by a British geneticist, Reginald C. Punnett. It is a graphical representation to calculate the probability of all possible genotypes of offspring in a genetic cross. The possible gametes are written on two sides, usually the top row and left columns. All possible combinations are represented in boxes below in the squares, which generates a square output form.

(male) and dwarf tt (female) plants, the gametes produced by them and, the F_1 **Tt** progeny. The F_1 plants of genotype Tt are self-pollinated. The symbols $\stackrel{\textbf{Q}}{\rightarrow}$ and $\stackrel{\textbf{\sigma}}{\rightarrow}$ are used to denote the female

(eggs) and male (pollen) of the F, generation, respectively. The F, plant of the genotype **Tt** when self-pollinated, produces gametes of the genotype \mathbf{T} and \mathbf{t} in equal proportion. When fertilisation takes place, the pollen grains of genotype **T** have a 50 per cent chance to pollinate eggs of the genotype **T**, as well as of genotype **t**. Also pollen grains of genotype **t** have a 50 per cent chance of pollinating eggs of genotype **T**, as well as of

The Punnett Square shows the parental tall **TT Figure 5.4** A Punnett square used to understand a typical monohybrid cross conducted by Mendel between true-breeding tall plants and true-breeding dwarf plants

73