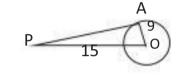


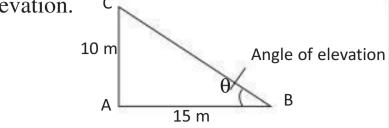
If three coins are tossed at a time then ...



KMV Mohankumar

Subject expert

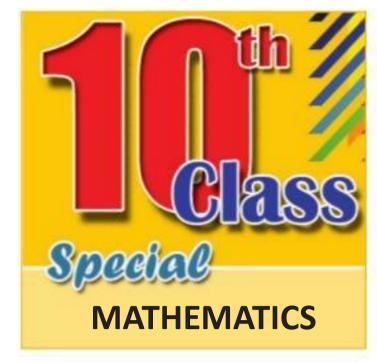
IMPORTANT QUESTIONS

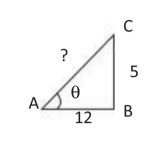

- 1. Find the distance between the points A (asin θ , 0); B(0, acos θ)
- A. Distance of AB = $\sqrt{a^2 \sin^2 \theta + a^2 \cos^2 \theta}$
- 2. In the adjacent picture AD = 3cm, AB = 8cm,DE = 4.5 cm. Then find BC
- $=\sqrt{a^2(1)}=a$
- 3. Calculate the length of tangent from a point 15 cm away from the centre of circle of radius 9cm.
- A.

$$OP^2 = OA^2 + PA^2 \Rightarrow 15^2$$

= $9^2 + AP^2 = 225 - 81$
 $AP = \sqrt{144} = 12cm$

- 4. If $3 \tan A = 4 \text{ then find sinA}, \cos A$.
- A. TanA = $\frac{4}{3}$ BC = 5, SinA = $\frac{4}{5}$, CosA = $\frac{3}{5}$
- 5. Express Sin75°+Cos 65° in terms of trigonometric ratios of angles between 0° and 45° .
- **A.** $\sin(90-15) + \cos(90-35^{\circ}) \Rightarrow \cos 15^{\circ} + \sin 35^{\circ}$
- **6.** Draw a rough diagram of the following data.
 - "A pole 10 m high casts a shadow 15m long on the ground". Find the sun's


Elevation. A.


- 7. There are five cards in a box with numbers 1 to 5. If one card is drawn at randomly what is the probability of an even number.
- A. Total possible outcomes n(S) = 5Favorable outcomes (n(E) = even numbers= 2, 4 = 2 $P(E) = \frac{N(E)}{N(S)} = \frac{2}{5}$
- **8.** Write the formula of mean by deviation method.
- A. Mean = $x = A + \frac{\sum fd}{\sum f}$
- **9.** Find the probability of getting 53 sundays. ² In a leap year 52 sundays and 2 days
- A. $\overline{7}$ 53 sundays = $\frac{2}{7}$
- 10. If $\sin\theta = \frac{1}{2}$ then what is the value of $\sin 2\theta$
- A. $\sin\theta = \sin 30$ $\Rightarrow \sin 2\theta = \sin 60^\circ = \frac{\sqrt{3}}{2}$
- **11.** In the adjacent picture Find the area of shaded portion.
- **A.** Area of the shaded portion = Area of right angle $= \frac{1}{2}bh = \frac{1}{2} \times 3 \times 4 = 6$ sq. units.
- **12.** In the adjacent picture BC = 10m, Ac = 20mthen find ' θ '.
- **A.** In the given picture

$$\sin\theta = \frac{1}{2} = \sin 30^{\circ} \Rightarrow \theta = 30^{\circ}$$

 $\sin \theta = \frac{10}{20} = \left(\frac{\text{Opposite side}}{\text{Hypotenious}} \right)$

- 13. A Man goes 12 m due east and then 8m due north. How far is he from the starting point.
- **A.** By Pythagoras $AC^2 = AB^2 + BC^2$ $= (12)^2 + (5)^2$ = 144 + 25 = 169 $AC = \sqrt{169} = 13m$

- 14. If three coins are tossed at a time then what is the probability of 3 heads.
- **A.** No.of Possible outcomes n(s) = 8No. of favorable outcomes n(E) = 1
- **15.** Find the mean of 1st 5 prime numbers
- **A.** First 5 prime numbers 2, 3, 5, 7, 11 $Mean = \frac{Sum of observations}{No.of observations}$

$$x = \frac{2+3+5+7+11}{5} = \frac{28}{5} = 5.6$$

∴ Mean = 5.6

- **16.** Find the mode of $\sin 90^{\circ}$, $\cos 0^{\circ}$, $\sin 0^{\circ}$ and tan 45° .
- **A.** We know the trigonometric ratios $\sin 90^{\circ} = 1$, $\cos 0^{\circ} = 1$, $\sin 0^{\circ} = 0$, $\tan 45^{\circ} = 1$ \therefore Mode of the data = 1
- **17.** If the midpoint of the line segment joining

the points A(8, a - 2) and B(-2, 4) is (3, 6). Find the value of a.

A. (-2, 4)

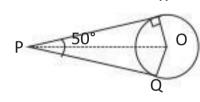
We know the mid point formula

$$P(3,6) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$(3,6) = \left(\frac{8 - 2}{2}, \frac{a - 2 + 4}{2}\right)$$

Compare the points

 $\frac{a+2}{2} = 6 \Rightarrow a+2=12$


a = 10

- **18.** If $\sin(A B) = \frac{1}{2}\cos(A + B) = \frac{1}{2}$, 0 < A+ B \leq 90°, then find A & B.
- A. $Sin(A B) = Sin 30^{\circ}$ \Rightarrow A - B = 30° ——(1) $Cos (A + B) = cos 60^{\circ}$ $A + B = 60^{\circ}$ — (2) From (1) & (2) we will get

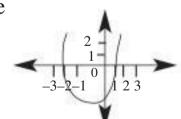
A - B = 30A + B = 60

2A = 90 $A = 45^{\circ}, B = 15^{\circ}$

19. In the below picture, if $\angle RPO = 50^{\circ}$ then find $\angle ROP$

- A. Given that $\angle RPO = 50^{\circ}$ We know that $\angle PRO = 90^{\circ}$ (\cdot : Radius \perp point of contact) Sum of interior angles of a triangle is 180° \angle RPQ + \angle PRO + \angle POR = 180° $50 + 90 + \angle POR = 180^{\circ}$ $\angle POR = 180-140^{\circ} = 40^{\circ}$
 - $\therefore \angle POR = 40^{\circ}$

MULTIPLE CHOICE QUESTIONS

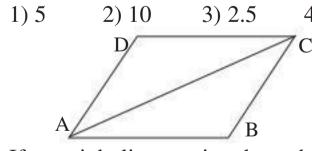

- 1. If one root of the equation $4x^2-2x+(\lambda-4)$ =0 be the reciprocal of the other, then λ =

1) 8

- 4) 5 3) 6
- **2.** The sum of a number and its reciprocal is 5/2 Represent this situation as

2) 7

- 1) $x^2 + x = \frac{5}{2}$
- 3) $x \frac{1}{x} = \frac{5}{2}$
- 4) None
- **3.** From the figure the roots of the quadratic equation are


- 1) -2, 1 2) -1, 2 3) 0, 14) 0, 2
- **4.** The roots of the quadratic equation $\frac{x^2 - 8}{x^2 + 20} = \frac{1}{2}$ are
- 1) ± 2 $2) \pm 3$ $3) \pm 4$ $4) \pm 6$
- 5. If a, b, c are in A.P., then 1) 2b = a + c2) b=a+c4) $b = \sqrt{ac}$ 3) b = ac
- **6.** If the sum of first k terms of an A.P. is 3k²–k and its common difference is 6 then the first term is 2) 2 4) 4 3) 3 1) 1
- 7. Find the sum of first 15 multiples of 8() 1) 960 2) 1000 3) 940 4) 1060

- **8.** In a G.P. 3rd term is 24 and 6th term is 192, then 10th term is 1) 1024 2) 2048 3) 3072 4) 4024
- 9. In a garden there are 32 rose flowers in first row and 29 flowers in 2nd row, 26 flowers in 3rd row, then how many rose flowers are there in the 6th row 2) 15 3) 16 4) 17
- 10. The common difference of an Arithmetic progression, whose 3rd term is 5 and 7th term is 9, is 1) 1 2) 2 3)3 4) 4
- 11. The distance between (x_1,y_1) and (x_2, y_2)
 - 1) $\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$
 - 2) $\sqrt{(x_2 x_1)^2 + (y_2 + y_1)^2}$
 - 3) $\sqrt{(x_2 + x_1)^2 + (y_2 y_1)^2}$ 4) $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
- 12. The triangle with vertices (-2, 1), (2,-2)and (5, 2) is 2) Equilateral 1) Scalene

 - 4) Right angled isosceles 3) Isosceles
- 13. The co-ordinates of the centroid of the triangle whose vertices are (8,–5), (–4,7) and (11, 13) are 1) (2,2) 2) (3,3) 3) (4,4) 4) (5,5)
- 14. 'Heron's formula to find the area of a triangle is

- 1) $\sqrt{(s-a)(s-b)(s-c)}$
- 2) $\sqrt{s(s+a)(s+b)(s+c)}$
- 3) $\sqrt{s(s-a)(s-b)(s-c)}$
- 15. From the figure, if area of $\triangle ABC=5$ sq. units, then the area of given parallelogram is _____ sq.units

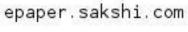
4) None

- **6.** If a straight line passing through the points $P(x_1,y_1)$, $Q(x_2, y_2)$ is making an angle ' θ ' with positive X-axis, then the slope of the straight line is
 - 2) θ
 - 4) $\sin \theta$
- 17. In triangles ABC and DEF, \angle A = \angle E = 40°, AB:ED = AC:EF and \angle F = 65°, then ∠B = 1) 35° 2) 65° 3) 75° 4) 85°
- **18.** Sides of two similar triang les are in the ratio 4:9. Areas of these triangles are in the

- 3) 81:16 4) 16:81 1) 2:3 2) 4:9
- **19.** In an equilateral triangle ABC, if AD⊥BC, then
 - 1) $2 AB^2 = 3 AD^2$ 2) $4 AB^2 = 3 AD^2$ 3) $3 AB^2 = 4 AD^2$ 4) $3 AB^2 = 2 AD^2$
- **20.** If $\triangle ABC$ is an isoscles triangle and D is a point on BC such that AD \perp BC, then ()
 - $1) AB^2 AD^2 = BD.DC$
 - 2) $AB^2-AD^2=BD^2-DC^2$ $3) AB^2 + AD^2 = BD.DC$

4) $AB^2 + AD^2 = BD^2 - DC^2$

ANSWERS 2) 2 5) 1 3) 1 4) 4 7) 1 6) 2 8) 3 10) 1 9) 4 11) 4 12) 4 13) 4 14) 3 15) 2


18) 4

19) 3

20) 1

16) 3 17) 3

