The sum of the two irrational numbers

REAL NUMBERS

Euclid's Division Lemma

Let ' a ' and ' b ' any two positive integers. Then there exist two unique whole numbers q, r such that
$\mathrm{a}=\mathrm{bq}+\mathrm{r}, \mathrm{o} \leq \mathrm{r} \leq \mathrm{b}$
Here ' a ' is called the dividend, b is called the divisor, q is called the quotient, r is called the remainder. Alternatively Dividend $=$ Divisor \times Quotient + Remainder

1. Use Euclid's division algorithm to find the HCF of 135, 225.
Sol: Given numbers are 135, 225.
Start with the larger integer, that is 225 .
Apply the division lemma to 225, 135, $225=135 \times 1+90$
Since the remainder $90 \neq 0$, we apply the division lemma to 135 and 90 , to get 135 $=90 \times 1+45$
We consider the new divisor 90 , the new remainder 45 , apply the division lemma to get $90=45 \times 2+0$
The remainder has now become zero, so our procedure stops.
Since the divisor at this stage is 45 .
\therefore The HCF of 225,135 is 45 .
2. Use Euclid's division lemma to show that the square of any positive integer is of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .
Sol: Let 'a' be any positive integer. We apply the division lemma with $a, b=3$ Since $\mathrm{o} \leq \mathrm{r}<3$, the possible remainders are 0,1 , 2. i.e. 'a' can be 3 p or $3 \mathrm{p}+1$ or $3 \mathrm{p}+2$, where ' p ' is the quotient. $\operatorname{Now}(3 \mathrm{p})^{2}=9 \mathrm{p}^{2}$ $=3\left(3 \mathrm{p}^{2}\right)$
Which can be written in the form 3 m
Again $(3 \mathrm{p}+1)^{2}=9 \mathrm{p}^{2}+6 \mathrm{p}+1=$ $3\left(3 p^{2}+2 p\right)+1$
Which can be written in the form $3 \mathrm{~m}+1$.
Lastly $(3 p+2)^{2}=9 p^{2}+12 p+4$
$=\left(9 p^{2}+12 p+3\right)+1$
$=3\left(3 p^{2}+4 p+1\right)+1$
Which can be written in the form $3 \mathrm{~m}+1$.
\therefore The square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m .

The Fundamental Theorem of Arithmetic

Every composite number can be expressed (Factored) as a product of primes, this factorization is unique, apart from the order in which the prime factors occur. In general, given a composite number x, we factorize it as
$x=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}$, where $\mathrm{p}_{1}, \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}$ are primes and written in ascending order. i.e. $\mathrm{p}_{1} \leq \mathrm{p}_{2}$ $\leq \ldots \leq p_{n}$
Ex: $156=2 \times 2 \times 3 \times 13$
$=2^{2} \times 3^{1} \times 13^{1}$
$3825=3 \times 3 \times 5 \times 5 \times 17$
$=3^{2} \times 5^{2} \times 17$.

1. Express each of the following number as a product of its prime factors.
i) 5005 ii) 7429
(Communication)

speciae

మ్యాథమెటిక్స్

Sol:
i) $5005=5 \times 7 \times 11 \times 13$
ii) $7429=17 \times 19 \times 23$
2. Check whether 6^{n} can end with the digit ' 0 ' for any natural numbers n. (Reasoning proof)
Sol: n is any natural number.
If $\mathrm{n}=1$, then $6^{\mathrm{n}}=6^{1}=6$
If $\mathrm{n}=2$, then $6^{\mathrm{n}}=6^{2}=36$
If $n=3$, then $6^{n}=6^{3}=216 \ldots$.
From the above, we can say that 6^{n} can be end with 6 only.
\therefore For any natural number $\mathrm{n}, 6 \mathrm{n}$ cannot end with the digit ' 0 '.
3. Find the value of x, y, z in the given factor tree

(Visualization \& Representation)
Sol: From the factor tree.
$\mathrm{z}=5 \times 7=35$
$y=2 \times z=2 \times 35=70$
$\mathrm{x}=2 \times \mathrm{y}=2 \times 70=140$.

LCM

LCM: The LCM of two positive integers is defined as the product of the greatest power of each prime factor, involved in the numbers.
Ex: LCM of 336, 54.
$336=2^{4} \times 3^{1} \times 7^{1}$
$54=2 \times 3^{3}$
LCM of $336,54=$ product of the greatest power of each prime factors of the numbers $=2^{4} \times 3^{3} \times 7^{1}=3024$

HCF

The HCF of two positive integers is defined as the product of the smallest power of each common prime factor in the numbers.
Ex: HCF of 336, 54
$336=2^{4} \times 3^{1} \times 7^{1}, 54=2 \times 3^{3}$
HCF of $336,54=$ product of the smallest power of each common prime factors of the numbers
$2^{1} \times 3^{1}=6$

- If a, b are any two positive integers, then $\operatorname{HCF}(a, b) \times L C M(a, b)=a \times b$.

1. Find the HCF, LCM of the following integers by the prime factorization method.
i) $12,15,21$
ii) 72,108
(Problem Solving)
Sol: 1) $12=2^{2} \times 3,15=3 \times 5$,
$21=3 \times 7$
LCM $=2^{2} \times 3 \times 5 \times 7=420$
$\mathrm{HCF}=3$
ii) $72=2^{3} \times 3^{2}, 108=2^{2} \times 3^{3}$
$\mathrm{LCM}=2^{3} \times 3^{3}=216$,
$\mathrm{HCF}=2^{2} \times 3^{2}=36$
2. Three bells toll at intervals of $9,12,15$ minutes respectively. If they start tolling together, after what time will they next toll together?
(connection)
Sol: Required number of minutes is the
LCM of 9, 12, 15
$=2^{2} \times 3^{2} \times 5=180$ minutes $=3$ hours
$9=3^{2}$
$12=2^{2} \times 3$
$15=3 \times 5$
. Three bells will toll together again, after 3 hours
Terminating or Non Terminating, Repeating (recurring) Decimals in Rational Numbers
Let $x=\frac{p}{q}$ be a rational number.If the prime factorization of q , is in the form of $2^{\mathrm{n}} .5^{\mathrm{m}}$, where n, m are non-negative integers, then $x=\frac{\mathrm{p}}{\mathrm{q}}$ is a terminating decimal.
if q is not in the form of $2^{\mathrm{n}} .5^{\mathrm{m}}$,
then x is a non terminating, repeating
(recurring) decimal. Converse also true.
Ex: i) $\frac{16}{125}=\frac{16}{5^{3}}$
Here $\mathrm{q}=5^{3}=2^{0} \times 5^{3}$, which is in the form $2^{\mathrm{n}} .5^{\mathrm{m}}(\mathrm{n}=0, \mathrm{~m}=3)$, so
the rational number $\frac{16}{125}$ is a
terminating decimal.
ii) $\frac{41}{75}=\frac{41}{3 \times 5^{2}}$

Here $\mathrm{q}=3^{1} \times 5^{2}$, which is not in the form $2^{\mathrm{n}} .5^{\mathrm{m}}$ $: \frac{41}{75}$ is a non terminating,

repeating decimal

Rational numbers (Q): A number which can be written either in the form of terminating decimal or non-terminating repeating decimal is called a rational number.
Set of Rational no.s
$\mathrm{Q}=\left\{\frac{\mathrm{p}}{\mathrm{q}} / \mathrm{p}, \mathrm{q} \in \mathrm{z}, \mathrm{q} \neq 0, \mathrm{p}, \mathrm{q}\right.$ are co - primes $\}$
Irrational numbers $\left(\mathbf{Q}^{1}\right)$: A number which cannot be written in the form of non-terminatring non-repeating is called irrational number.
Ex: $\sqrt{ } 2=1.414 \ldots, \sqrt{ } 3=1.732 \ldots$,
$\pi=3.14 \ldots$ etc.

- An irrational number between a, b is $\sqrt{a b}$ where a, b are not perfect square numbers
- $\quad \checkmark \mathrm{P}$ is irrational, where p is prime

Ex: $\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 5, \ldots$.

- Sum (or difference) of a rational, an irrational number is irrational.
- The product (or quotient) of a non-zero rational, irrational number is irrational.
- The sum (or product) of the two irrational numbers need not be irrational.
- We will prove the irrationality of numbers by using the 'method of contradiction'

1. Write the decimal expansion of the following rational numbers without actual division.
(Communication)
i) $\frac{13}{3125} \quad$ ii) $\frac{7218}{3^{2}-5^{2}}$

Sol:
i) $\frac{13}{3125}=\frac{13}{5^{5}}=\frac{13}{5^{5}} \times \frac{2^{5}}{2^{5}}$
$\frac{13 \times 32}{(5 \times 2)^{5}}=\frac{416}{10^{5}}=0.00416$
ii) $\frac{7218}{3^{2} \cdot 5^{2}}=\frac{9 \times 802}{9 \times 5^{2}}=\frac{802}{5^{2}}$

$$
\begin{aligned}
& =\frac{802 \times 2^{2}}{5^{2} \times 2^{2}}=\frac{802 \times 4}{(5 \times 2)^{2}} \\
& =\frac{3208}{10^{2}}=32.08
\end{aligned}
$$

2. Without performing division, state whether the following rational numbers will have a terminating decimal form or a non-terminating, repeating decimal form.
(Reasoning proof)
i) $\frac{15}{1600}$
ii) $\frac{64}{455}$

Sol:
i) $\frac{15}{1600}=\frac{5 \times 3}{5 \times 320}=\frac{3}{320}=\frac{3}{2^{6} \times 5}$
$\left(\because 320=2^{6} \times 5\right)$
Here $\mathrm{q}=2^{6} \times 5$, which is in the form $2^{\text {n }}$ $\times 5^{\mathrm{m}}(\mathrm{n}=6, \mathrm{~m}=1)$
$\therefore \frac{15}{1600}$ is a terminating decimal
ii) $\frac{64}{455}=\frac{64}{5 \times 7 \times 13}$

Here $\mathrm{q}=5 \times 7 \times 13$, is which is not in the form $2^{\mathrm{n}} .5^{\mathrm{m}}$
$: \frac{64}{455}$ is a non terminating, repeating decimal.

Model Questions

1 Mark Questions

1. Express 156 as a product of its Prime factors.
Sol: $156=2 \times 78=2 \times 2 \times 39$
$=2 \times 2 \times 3 \times 13=2^{2} \times 3 \times 13$
2. Explain why $3 \times 5 \times 7+7$ is a composite number

Sol: $3 \times 5 \times 7+7=(3 \times 5 \times 1+1) \times 7=16 \times 7=2^{4} \times 7$ Given number can be expressed as a product of primes.
\therefore By fundamental theorem of Arithmetic it is a composite number.
3. "The sum of the two irrational numbers need not be irrational. Give example
Sol: If $\mathrm{a}=\sqrt{3}, \mathrm{~b}=-\sqrt{3}$ are irrational. but $\mathrm{a}+\mathrm{b}$ $=0$, which is
4. What is the last digit of 62019

Sol: $6^{1}=6$

$6^{2}=6 \times 6=36$

$6^{3}=6 \times 6 \times 6=216$
for any positive integer $n, 6^{n}$ can end with 6 . \therefore The last digit of 6^{2019} is 6 .

