మంగళవారం 7 జనవరి 2020 - హైదరాబాద్

nthyd.com ntnews.com

Which is a simple ether?

ETHERS

Continued from January 6th..

- NATALITE(mixture of alcohol and ether), a 1 substitute for petrol
- Refrigerant along with dry ice (solid CO,) which produces a temperature around -110°C Estimation of number of alkoxy groups by Zeisel method

This method is used for the estimation of number of alkoxy groups in ethers by reaction with HI followed by AgNO, solution. From this weight

of Agl formed is calculated to determine the number of alkoxy groups.

 $R - O - R + 2HI \rightarrow 2R - I + H,O$

2RI+2AgNO, → 2AgI+2RNO,

Exclusive for JEE - ADVANCE

Reactions of alkyl group (Halogenation): 1 Diethyl ether reacts with chlorine or bromine to form halogen substituted ethers.Hydrogens at α carbon atoms are easily substituted in the dark condition.

CH₁CH₂OCH₂CH₃
$$\xrightarrow{Cl_2} Dark$$

CH₃ - $\overset{\circ}{C}$ H (Cl) - O - $\overset{\circ}{C}$ H(Cl) - CH₃
(α, α' dicholoro diethyl ether)
CH₃CH₂OCH₂CH₃ $\xrightarrow{Cl_2} Sunlight$
CH₃CH₂OCH₂CH₃ $\xrightarrow{Cl_2} O - C_2Cl_3$
(perchloro diethyl ether)

- Ethers are obtained by
 - 1) Reaction of alkyl halide with dry ZnO 2) Reaction of alkyl halide with moist ZnO Reaction of alkyl halide with dry Ag,O 4) Reaction of alkyl halide with moist Ag,O

PROPERTIES AND USES OF ETHERS

- Following one is formed when a diethyl ether 6. is exposed to air for longer period 1) Ethyl alcohol 2) Acetaldehyde
 - 4) Peroxide of diethyl ether 3) Ethylene
- 7. The compound which has the lowest boiling point is

1) H₂O 2) C₂H₃OH 3) $\overset{CH_2 - CH_2}{\overset{I}{OH}}$ 4) CH₃OCH₃

- Total number of lone pair of electrons around oxygens in diethyl peroxide is / are 1)22)33)44)0
- Ethyl chloride reacts with sodium ethoxide 9. to form a compound (A). Which of the following reactions also yields (A)?

C,H,Cl,KOH(alc),∆

2C, H, OH, conc. H, SO₄, 140° C

3) C,H,Cl,Mg(dryether) 4) C,H,,dll.H,SO,,HgSO,

10. The IUPAC name of $C_2H_5 - O - CH(CH_3)$, 1) Ethoxy propane 2) 1,1-dimethyl ether 3) 2-Ethoxy isopropane 4) 2-Ethoxy propane 11. 'A' reacts with C,H,I giving 'B' and Nal. Here 'A' and 'B' respectively are 1) CH,COONa,CH,OCH,

2) C,H,OC,H,,C,H,COOC,H,

- 3) C2H3ONa, C2H3OC2H3
- 4) C₂H₃OH₃C₂H₃OC₃H₃
- 12. Which of the following compounds when heated with CO at 150°C and 500 atm. pressure in presence of BF,, forms ethyl propionate ?

	CH ₃ 	Н 2) H−С−ОН	
	CH ₁	н	
	3) Both of these	4) None of these	
18.	Alcohols can be distinguished from ethers by		
	1) Sodium metal	2) Ester formation	
	3) lodoform test	4) All the above	
19.	$CH_3CH = CH_2 - HCT$	$\rightarrow X \xrightarrow{Dry Ag,O} Y$ The	
	product Y in the above	e sequence is	
	1) Di isopropyl ether	2) Di n - propyl ether	
	3) 2 - Propanol	4) 1, 2 - Epoxypropane	
20.	A mixture of ether and gives tempera- ture as low as 163 K		
	1) NaCl 2) Ice 3)	Solid CO ₂ 4) C ₂ H ₅ OH	
	JR MA		

Options of Q.No.21-26

Special /

1) Both A and R are true and R is the correct explanation to A 2) Both A and R are true and R is not the correct explanation to A 3) A is true but R is false 4) A is false but R is true 21. Assertion (A) : Ethers behave as Lewis base in the presence of mineral acids.

Reason (R) : Oxygen atom in ether is having lone pair electrons.

22. Assertion (A) : Diethyl ether is used as general

1) 2-methyl - 2- propanol 2) 2-Methoxypropane 3) 2-Methyl-1-propanol 4) Ethoxyethane

DEPERTOR AND DEPERTOR OF DEPERTOR

PR	OPERTIES AN	D USES OF ETHERS	
9.	The compound in which hydrogen bonding is not possible is		
	1) C,H,OCH,	2) CH,CH,OH	
	3) H,O	4) CH,COOH	
10.	Diethyl ether is used as		
	1) Anaesthetic 2) Solvent 3) Refrigerant 4) All		
11.	The safest general anaesthesia used at present is		
	1) chloroform	2)diethyl ether	
	3) acetylene	halothane	
12.	Formula of halothane is		
	1) CF,Cl,	2) CF,Cl	
	2) CTE CLICID-	AV CEN	

నమస్తే తెలంగాణ 6

(peremoto ulculy) culer. Reactions of ethereal oxygen

 $C_2H_5-O-C_2H_5+(O)\rightarrow C_2H_5-O-C_2H_5$ (Peroxide)

Formation of oxonium Salts 1

> $C_{2}H_{3}-O-C_{2}H_{1}$ + HBr $\rightarrow |C_{2}H_{1}-O-C_{2}H_{1}|$ Br Diethyl oxonium bromide

$$C_2H_3 \rightarrow O - C_2H_3 + H_2SO_4 \rightarrow C_2H_4 - O - C_2H_5$$
 HSO

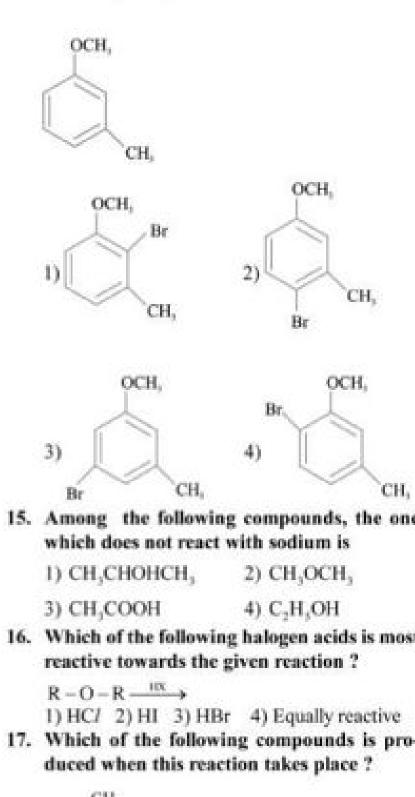
- Diethyl oxonium hydrogen sulphate Hydrolysis $C_3H_4 - O - C_2H_4 + H_2O \rightarrow 2C_2H_5OH$ (steam)
- Action of PCI, $C,H_s - O - C,H_s + PCl_s \rightarrow 2C,H_sCl+POCl_s$
- Action of acetyl chloride and acetic 1 anhydride

 $C,H_s = O = C,H_s + CH,COCI \xrightarrow{AOO_1}$ C,H,CI + CH,COOC,H, $C_2H_3 - O - C_2H_3 + (CH_3CO)_2O \longrightarrow$ 2CH,COOC,H,

Action of carbon monoxide

 $C_2H_3 - O - C_2H_3 + CO \xrightarrow{BF_2/150^{\circ}C} C_2H_3COOC_2H_3$ (ethylpropionate)

- > Oxidation $C,H_sO C,H_s + (O) \longrightarrow 2CH_s CHO$ $\xrightarrow{\operatorname{aust}(K_1 \cup p_1)} 2CH_1COOH$
- Dehydration 8


$$C_2H_5O C_2H_5 \xrightarrow{AU_2O_1 \cap BO^*C} 2CH_2 = CH_2 + H_2O$$

LEVEL I A

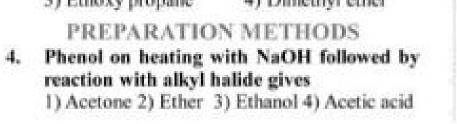
NOMENCLATURE

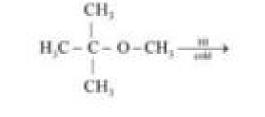
- 1. The compound which is not isomeric with diethyl ether is 1) Butanone 2) Methyl propyl ether 3) 2-methyl propane-2-ol 4) Butanol-1 2. The number of metameric ethers possible
- with the formula C₄H₁₀O are 2)33) 2 4) 5 134
- The IUPAC name of C.H. O C.H. 1) Diethyl ether 2) Ethoxy ethane 3) Ethoxy propane 4) Dimethyl ether

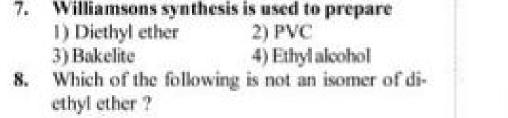
1) C, H, OH2) CH,OCH, 4) CH, OC, H, 3) C, H, OC, H,

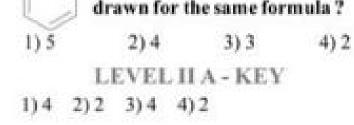
- 13. One mole of diethyl ether on heating with conc.HI gives
 - Mole of C, H, I and I mole of C, H, OH 2) 2 Moles of iodoethane Moles of ethanol 4) Iodoethane and ethanol but not in a 1:1 mole ratio
- 14. The major product obtained on the monobromination (with Br, / FeBr,) of the following compound is

	100025	anaesthesia.	13.	The
i-		Reason (R) : Diethyl ether produces	15.	
		unconsciousness without effecting lungs.		with
	23.	Assertion (A): Ethers are relatively inert when	The second	1) E 3) E
		compared to C2H5OH	14.	Con
h		Reason (R): The hybridization of C and O in		С,Н
•		$CH_1 - O - CH_1$ is SP^3		1) S
	24.	Assertion(A): Diethyl ether reacts with hot		3) E
		Conc H.SO, and gives ethyl hydrogen	15	C, H
		sulphate	4	Xar
e		Reason (R) : The reaction involves cleavage		1) 0
		of C-O bond in diethyl ether.		
e	25.	Assertion (A): Ethers behave as base in presence of mineral acids		3) C
e		Reason (R): Oxygen atom in ether is having	16.	Whi
		lonepair		1) P
	26.	Assertion (A): Alkyl aryl ethers on reacton with		3) P
		HI give alkyl iodide, phenols	17.	Anis
		Reason (R): Aryl - oxygen bond is weaker than		give
		alkyl oxygen bond.		1) P
		LEVEL I A KEY		3) O
		1) 1 2) 2 3) 2 4) 2 5) 3 6) 4 7) 4	18.	Oxy
		8) 3 9) 2 10) 4 11) 3 12) 3 13) 2 14) 4		1) W
		15) 2 16) 2 17) 2 18) 4 19) 1 20) 3 21) 1		29.00
		22) 1 23) 2 24) 1 25) 1 26) 1	- 1	
				1)4
		LEVEL I B	1	8)4
	1	NOMENCLATURE		15) 2
	1.	The following represents ether 1) (RCO), O 2) RCOOR 3) RCOR 4) ROR		
	2	The dialkyl derivative of H _i O is	1 E	A A P
		1) Alcohol 2) Ether 3) Ester 4) Ketone	1.	ME
	3.	Which of the following is a simple ether?		not
		1) CH, OCH, 2) CH, OC, H,		1) C
	1.82	3) CH ₃ CH ₂ OCH(CH ₃) ₂ 4) C ₂ H ₃ OC ₃ H ₃		3) C
e	4.	Ethers are isomeric with	2.	Wha
		1) Aldehydes 2) Acids 3) Alcohols 4) Ketones		C_2H_2
	5.	C_H,,O is the general formula of ethers. To		X + 2
	595	exhibit the functional group isomerism 'n'	P	1) C
		must be minimum	3.	Whi
it –		1) 1 2) 2 3) 3 4) 4		by u
		PREPARATION METHODS		1) M
	6.	Heating together sodium ethoxide and ethyl	4	3) M Met
		chloride will give		00
		1) ether 2) ethyl alcohol		Å
		3) acetaldehyde 4) acetic acid		1


- 3) CF,-CHCIBr 4) (C,F,) e IUPAC name of an unsymmetrical ether h the molecular formula $C_{a}H_{\mu}O$ 2) Methoxyethane Ethoxypropane Ethoxyethane 4) Methoxypropane nsider the following reaction $H_{1} \xrightarrow{\Lambda} (Pleasant smelling liquid), X is$ Sodium 2) Dry silver oxide 4) Dry silver powder Ethyl chloride $H_5 - O - C_2 H_5 + \frac{HI}{(har)} \xrightarrow{\Lambda} X + Y$, here nd Y are C_3H_3I and C_2H_3OH 2) C_2H_3I and H_2O 4) $C_{1}H_{4} + H_{2}O$ C,H,OH+H,Otich one of these is formed on heating som phenoxide with ethyl iodide ? 2) Ethyl phenyl alcohol Phenetole-4) None of these henone isole with conc. HNO, and conc. H.SO, 65 Phenol Nitrobenzene D- and - P-Nitroanisole 4) O- Nitroanisole gen atom in ether is lery active 2) Replaceable 4) Relatively inert \ctive LEVEL I B - KEY 2) 2 3) 1 4) 3 5) 2 6) 1 7) 1 9)1 10)4 11)4 12)3 13)4 14)2 2 16) 1 17) 3 18) 4 LEVEL II A THODS OF PREPARATION
- ich of the following pairs of reagents will form ether


C,H,Br + C,H,ONa 2) C,H,Br + CH,ONa CH,Br + C,H,ONa 4) C,H,Br + HCOONa


at is Y in the following reactions $I_1I + NaOC_2H_2 \rightarrow X + NaI$ $2HI \rightarrow 2Y + H_1O$


$C_{2}H_{4} 2)C_{2}H_{5}l 3) C_{2}H_{4} 4) C_{2}H_{5}OC_{2}H_{5}$

- ich of the following cannot be prepared using Williamson synthesis ?
 - Aethoxybenzene 2) Benzyl-p-nitrophenol ether Aethyl tert-butyl ether 4) Ditertiary butyl ether
- thoxy benzene is called anisole. XCH,
 - How many more structures can be

