Find the sum of first n terms?

KMV Mohankumar

Subject expert

Important Questions

1. Check whether 6^{n} can end with the digit 0 for any natural number
A. Given number $6^{\mathrm{n}}=(2 \times 3)^{\mathrm{n}}$

The prime factors here 2 and 3 only. To be end with zero 6^{n} should have a prime factor 5 and 2.
So 6^{n} can't end with zero
2. Solve the following equations by elimination method.
$2 x+y-5=0,3 x-2 y-4=0$
A: Given equations $2 x+y-5=0-$ (i) $3 x-2 y-4=0$-(ii)
eq. (i) $\times 2 \Rightarrow 3 x+2 y-10=0$
eq.(ii) $\times 1 \Rightarrow \frac{3 x-2 y-4=0}{7 x}-14=0$
$7 x=14$
$x=2$
substitute $x=2$ in eq. (i)
$2 \times 2+y-5=0$
$y-1=0$
$y=1$
3. If $9 x^{2}+\mathrm{k} x+1=0$ have equal roots then find k value.
A: Given that
$9 x^{2}+k x+1=0$
have equal roots
is $\mathrm{b}^{2}-4 \mathrm{ac}=0$
$(\mathrm{k})^{2}-36=0$
$\mathrm{k}^{2}=36=0$
$\mathrm{k}^{2}=36 \Rightarrow \mathrm{k}=\sqrt{ } 3 \mathrm{~b}$
$\mathrm{k}= \pm 6$
4. Find the $10^{\text {th }}$ term of A.P. $7,101 / 2,14, \ldots$.

A: Given A.P. $7,10^{1 / 2}, 14, \ldots .84$
Here $\mathrm{a}=7, \mathrm{~d}=10^{1 / 2}-7=31 / 2$
$l=84$
We know $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(\mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$=7+9 \mathrm{~d}$
$=7+9\left(\frac{7}{2}\right)=\frac{77}{2}$
5. Find the total surface are of a solid hemisphere whose radius is 7 cm .
A. Given that radius of Hemisphere
$\mathrm{r}=7 \mathrm{~cm}$
Total surface area of Hemisphere is $3 \pi r^{2}$
$=3 \times \frac{22}{7} \times 7 \times 7$
$66 \times 7=462 \mathrm{~cm}^{2}$
\therefore Total surface area of the hemisphere is $462 \mathrm{~cm}^{2}$
6. A solid ball is exactly fitted inside the cubical box of side a. Then write the volume of the ball.
A: Given that side of the cube $=\mathrm{a}$
Side of the cube $=$ diameter of sphere
$\therefore \mathrm{r}=\frac{\mathrm{a}}{2}$
Volume of the sphere
$=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \frac{\mathrm{a}^{3}}{8}=\frac{\pi \mathrm{a}^{3}}{6}$
epaper.sakshi.com
7. Which term of AP. $21,18,15, \ldots$ is -81 ?

A: $\mathrm{AP}=21,18,15$,
$\mathrm{a}=21, \mathrm{~d}=18-21=-3$ and also given $\mathrm{t}_{\mathrm{n}}=-81$
$\mathrm{n}^{\text {th }}$ term of $\mathrm{AP}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=-81$
$21+(\mathrm{n}-1)-3=-81$
$21+(\mathrm{n}-1)-3=-81$
$21-3 n+3=-81$
$-3 n=-81-24$
$-3 n=-105$
$\mathrm{n}=\frac{-105}{-3}=35$
$\therefore 35^{\text {th }}$ term of AP is -81
8. represent $\mathrm{A} \cup \mathrm{B}, \mathrm{A} \cap \mathrm{B}$ on venn diagram.

目 $=A \cup B$

目 $=\mathrm{A} \cap \mathrm{B}$
9. Check whether $+2,+5$ are zeroes of Q.P $\mathrm{p}(x)=x^{2}-7 x+10$ and also verify relation between zeroes and co-efficients.
A: Given that
$\mathrm{p}(x)=x^{2}-7 x+10$
$\mathrm{p}(+2)=(2)^{2}-7(2)+10$
$=4-14+10$
$14-14=0$
$\therefore \mathrm{p}(2)=0$
2 is a zero of $\mathrm{p}(x)$
$\mathrm{p}(5)=(5)^{2}-7(5)+10$
$25-35+10=35-35=0$
$\therefore \mathrm{p}(5)=0$
5 is a zero of $\mathrm{p}(x)$
$\therefore 2,5$ are zeroes of given Polynomial.
Sum of zeroes $\alpha+p=-\frac{b}{a}$
$2+5=\frac{-(-7)}{1}$
$7=7$
Product of zeroes $\alpha \beta=\frac{c}{a}$
$2 \times 5=\frac{10}{1}$
$10=10$
Verified
10. If $x^{2}+y^{2}=6 x y$ then prove that $2 \log (x+y)$ $=3 \log 2+\log x+\log y$.
A: Given $x^{2}+y^{2}=6 x y$
Add 2 xy on both sides.
$x^{2}+y^{2}+2 x y=8 x y$
$(x+y)^{2}=8 x y \quad\left(\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right)$
Apply logarithms both sides.
$\log (x+y)^{2}=\log (8 x y)$
$2 \log (x+y)=\log 8+\log x+\log y$
$\left[\because \log \mathrm{a}^{\mathrm{m}}=\mathrm{m} \log \mathrm{a}\right.$
$\log \mathrm{ab}=\log \mathrm{a}+\log \mathrm{b}]$
$2 \log (x+y)=\log 2^{3}+\log x-1+\log y$
$2 \log (x+y)=3 \log 2+\log x+\log y$
$\left[\because \log a^{m}=m \log a\right]$
11. If $\mathrm{A}=\{x: x$ is a letter in the word ASSASSINATION $\}$

$\mathrm{B}=\{x: x$ is a letter in the word STATION $\}$ Then show that A and B are equal.
A: Given that $\mathrm{A}=\{x: x$ is a letter in the word ASSASSINATION\}
$\mathrm{B}=\{x: x$ is aletter in the word STATION $\}$
Roster form $\mathrm{A}=\{\mathrm{A}, \mathrm{I}, \mathrm{O}, \mathrm{S}, \mathrm{T}\}$

$$
\mathrm{B}=\{\mathrm{A}, \mathrm{I}, \mathrm{O}, \mathrm{~S} \mathrm{~T}\}
$$

$\therefore \mathrm{A} \& \mathrm{~B}$ are equal sets.
12. For what value of k the pair of linear equations $3 x+4 y+2=0,9 x+12 y+k=0$ represent co-incidents.
A: Given equations $3 x+4 y+2=0$

$$
9 x+12 y+k=0
$$

and also given co-incidents
ie. $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \Rightarrow \frac{3}{9}=\frac{4}{12}=\frac{2}{\mathrm{k}}$
$\frac{4}{12}=\frac{2}{\mathrm{k}} \Rightarrow 4 \mathrm{k}=24 \Rightarrow \mathrm{k}=6$
$\therefore \mathrm{k}=6$
13. Determine theAP whose $3^{\text {rd }}$ term is 5 and the $7^{\text {th }}$ term is 9 .
A: Given that $3^{\text {rd }}$ term is 5
ie. $\mathrm{a}+2 \mathrm{~d}=5$-(i)
$7^{\text {th }}$ term of AP is 9
ie. $a+6 d=9$-(ii)
Solve (i) \& (ii) we will get
$a+2 d=5$
$a+6 d=9$
$\mathrm{d}=1$
if $d=1$ then $a=3$
The required AP 3, 4, 5, 6, 7, 8, $9 \ldots$.
14. A toy is in the form of a cone mounted on a hemisphere. The diameter of the base and the height of the cone are $6 \mathrm{~cm}, 4 \mathrm{~cm}$ respectivelly. Determine the surface are of the toy.
A: Given that $\mathrm{h}=4 \mathrm{~cm}$ diameter of cone

$$
\mathrm{d}=6 \mathrm{~cm}, \mathrm{r}=3 \mathrm{~cm}
$$

15. Read the following picture and answer the following questions.

write the element of sets
i) Write set A
ii) $A \cup B$
iii) $A \cap B$
iv) μ

A: $A=\{1,2,3,4,5\}$
$A \cup B=\{1,2,3,4,5,6,7,8\}$
$A \cap B=\{4,5\}$
$\mu=\{1,2,3,4,5,6,7,8,9,10\}$
16. Cylinder and cone have bases of equal radii and are of equal heights. Show that their values are in the ratio of $3: 1$
A: Volume of cone $=\frac{1}{3} \pi r^{2} h$
Volume of cylinder $=\pi r^{2} h$
The ratio of volume of cone and cylinder
$\frac{1 / 3 \pi r^{2} h}{\pi r^{2} h}=1: 3$
The ratio of cylender volume and cone volume is $3: 1$
17. If the sum of first 7 terms of an A.P. is 49 and that of 17 terms are 289 . Then find the sum of first n terms.
A: Given that sum of 7 terms of $\mathrm{AP}=49$
ie. $S_{7}=49 \Rightarrow \frac{7}{2}[2 a+(7-1) d]=49$
$=2 a+6 d=49 \times \frac{2}{7} \Rightarrow 2 a+6 d=14 \longrightarrow(1)$
and also given sum of 17 terms of $\mathrm{AP}=289$
ie. $\mathrm{S}_{17} \Rightarrow \frac{17}{2}[2 \mathrm{a}+16 \mathrm{~d}]=289$
$2 a+16 d=289 \times \frac{2}{17}$
$2 a+16 d=34-$ (2)
Solve (1) \& (2) we will get
$2 a+6 d=14$
$2 a+16 d=34$

$$
-10 \mathrm{~d}=-20 \quad \mathrm{~d}=
$$

Substitute d $=2$ in eq. (1)

$$
2 a+12=14 \Rightarrow 2 a=2 \Rightarrow a=1
$$

We know the formula of sum of n terms
$S_{n}=\frac{n}{2}[2 a+(n-1)] d=\frac{n}{2}[2+(n-1) 2]$
$=\frac{n}{2}[2+2 n-2]=\frac{n}{2}[2 n]=n^{2}$

Slant height of the cone
$l=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}} \Rightarrow l=\sqrt{3^{2}+4^{2}}$
$\Rightarrow l=\sqrt{25}=5 \mathrm{~cm}$
C.S.A. of hemisphere $=$ $2 \pi r^{2}$

$$
=\frac{22}{7} \times 3 \times 5=\frac{330}{7} \mathrm{~cm}^{2}
$$

Hence surface Area of the toy
$=$ C.S.A. of cone + C.S.A Hemisphere
$\frac{330}{7}+\frac{396}{7}=\frac{726}{7}=103.71$

