Send your Feedback to vidya@sakshi.com

హైదరాబాద్ | గురువారం | జనవల | 9 | 2020

Find the sum of first n terms?

KMV Mohankumar Subject expert

Important Questions

- **1.** Check whether 6^n can end with the digit 0 for any natural number.
- A. Given number $6^n = (2 \times 3)^n$ The prime factors here 2 and 3 only. To be end with zero 6ⁿ should have a prime factor 5 and 2. So 6ⁿ can't end with zero
- 2. Solve the following equations by elimination method. 2x + y - 5 = 0, 3x - 2y - 4 = 0A: Given equations 2x + y - 5 = 0 —(i) 3x - 2y - 4 = 0 ——(ii) eq. (i) $\times 2 \Rightarrow 3x + 2y - 10 = 0$ eq.(ii) $\times 1 \Rightarrow 3x - 2y - 4 = 0$ -14 = 07x7x = 14x = 2substitute x = 2 in eq. (i) $2 \times 2 + y - 5 = 0$ y - 1 = 0y = 1
- 7. Which term of AP. 21, 18, 15, ... is -81? **A:** AP = 21, 18, 15, a = 21, d = 18 - 21 = -3 and also given $t_{n} = -81$ n^{th} term of AP = a + (n-1)d = -81 21 + (n-1) - 3 = -8121 + (n-1) - 3 = -8121 - 3n + 3 = -81-3n = -81 - 24-3n = -105 $n = \frac{-105}{-3} = 35$
 - \therefore 35th term of AP is 81
- **8.** represent $A \cup B$, $A \cap B$ on venn diagram.

9. Check whether +2, +5 are zeroes of Q.P $p(x) = x^2 - 7x + 10$ and also verify relation between zeroes and co-efficients. A: Given that $p(x) = x^2 - 7x + 10$ $p(+2) = (2)^2 - 7(2) + 10$ = 4 - 14 + 1014 - 14 = 0 $\therefore \mathbf{p}(2) = 0$ 2 is a zero of p(x) $p(5) = (5)^2 - 7(5) + 10$ 25 - 35 + 10 = 35 - 35 = 0: p(5) = 05 is a zero of p(x) \therefore 2, 5 are zeroes of given Polynomial. Sum of zeroes $\alpha + p = -\frac{b}{a}$ $2+5=\frac{-(-7)}{1}$ 7 = 7Product of zeroes $\alpha\beta = \frac{c}{a}$ 2 $5 = \frac{10}{1}$ 10 = 10Verified 10. If $x^2 + y^2 = 6xy$ then prove that $2\log(x+y)$ $= 3\log 2 + \log x + \log y.$ **A:** Given $x^2 + y^2 = 6xy$ Add 2xy on both sides. $x^2 + y^2 + 2xy = 8xy$ $(x + y)^2 = 8xy$ (::(a+b)² = a²+b² + 2ab) Apply logarithms both sides.

- $B = \{x: x \text{ is a letter in the word STATION}\}$ Then show that A and B are equal.
- A: Given that $A = \{x : x \text{ is a letter in the} \}$ word ASSASSINATION} $B = \{x: x \text{ is aletter in the word STATION}\}$ Roster form $A = \{A, I, O, S, T\}$ $B = \{A, I, O, S T\}$: A & B are equal sets.
- **12.** For what value of k the pair of linear equations 3x + 4y + 2 = 0, 9x + 12y + k = 0represent co-incidents.
- A: Given equations 3x + 4y + 2 = 09x + 12y + k = 0and also given co-incidents

15. Read the following picture and answer the following questions.

- write the element of sets i) Write set A ii) $A \cup B$ iii) $A \cap B$ iv) **A:** $A = \{1, 2, 3, 4, 5\}$ $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $A \cap B = \{4, 5\}$ $= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- 16. Cylinder and cone have bases of equal radii and are of equal heights. Show that their values are in the ratio of 3:1
- A: Volume of cone $=\frac{1}{3}\pi r^2h$

Volume of cylinder = $\pi r^2 h$ The ratio of volume of cone and cylinder

$$\frac{\frac{1}{3}\pi r^2 h}{\pi r^2 h} = 1:3$$

The ratio of cylender volume and cone volume is 3 : 1

3. If $9x^2 + kx + 1 = 0$ have equal roots then find k value. A: Given that $9x^2 + kx + 1 = 0$ have equal roots is $b^2 - 4ac = 0$ $(k)^2 - 36 = 0$ $k^2 = 36 = 0$ $k^2 = 36 \Rightarrow k = \sqrt{3} b$ $k = \pm 6$

4. Find the 10th term of A.P. 7, 10¹/₂, 14, A: Given A.P. 7, 10¹/₂, 14, 84 Here a = 7, $d = 10\frac{1}{2} - 7 = 3\frac{1}{2}$ l = 84We know $S_n = \frac{n}{2}(a + (n-1)d)$ = 7 + 9d $=7+9\left(\frac{7}{2}\right)=\frac{77}{2}$

5. Find the total surface are of a solid hemisphere whose radius is 7 cm.

A. Given that radius of Hemisphere r = 7 cmTotal surface area of Hemisphere is $3\pi r^2$ $=3 \frac{22}{7} 7 7$ $66 \times 7 = 462 \text{ cm}^2$ 462 cm^2

- 6. A solid ball is exactly fitted inside the cubical box of side a. Then write the volume of the ball.
- **A:** Given that side of the cube = a Side of the cube = diameter of sphere $\therefore r = \frac{a}{2}$

 $\log ab = \log a + \log b$]

ie. $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{3}{9} = \frac{4}{12} = \frac{2}{k}$ $\frac{4}{12} = \frac{2}{k} \Longrightarrow 4k = 24 \Longrightarrow k = 6$ \therefore k = 6

- **13.** Determine the AP whose 3rd term is 5 and the 7th term is 9. **A:** Given that 3rd term is 5 ie. a + 2d = 5 —(i) 7th term of AP is 9 ie. a + 6d = 9 ——(ii) Solve (i) & (ii) we will get a + 2d = 5a + 6d = 9-4d = -4d = 1if d = 1 then a = 3The required AP 3, 4, 5, 6, 7, 8, 9
- 14. A toy is in the form of a cone mounted on a hemisphere. The diameter of the base and the height of the cone are 6 cm, 4cm respectivelly. Determine the surface are of the toy.

6 cm

A: Given that h = 4cmdiameter of cone d = 6 cm, r = 3 cmSlant height of the cone

$$l = \sqrt{r^{2} + h^{2}} \implies l = \sqrt{3^{2} + 4}$$
$$\implies l = \sqrt{25} = 5 \text{ cm}$$
C.S.A. of hemisphere =
$$2\pi r^{2}$$
$$= \frac{22}{7} \quad 3 \quad 5 = \frac{330}{7} \text{ cm}^{2}$$

17. If the sum of first 7 terms of an A.P. is 49 and that of 17 terms are 289. Then find the sum of first n terms. A: Given that sum of 7 terms of AP = 49

ie.
$$S_7 = 49 \Rightarrow \frac{7}{2}[2a + (7-1)d] = 49$$

 $= 2a + 6d = 49 \quad \frac{2}{7} \Rightarrow 2a + 6d = 14 \quad ---(1)$
and also given sum of 17 terms
of AP=289
ie. $S_{17} \Rightarrow \frac{17}{2}[2a + 16d] = 289$
 $2a + 16d = 289 \times \frac{2}{17}$
 $2a + 16d = 34 \quad ---(2)$
Solve (1) & (2) we will get
 $2a + 6d = 14$
 $2a + 16d = 34$
 $-10d = -20 \qquad d = 2$
Substitute $d = 2$ in eq. (1)
 $2a + 12 = 14 \Rightarrow 2a = 2 \Rightarrow a = 1$
We know the formula of sum of n terms

 $S_n = \frac{n}{2} [2a + (n-1)]d = \frac{n}{2} [2 + (n-1)2]$ $=\frac{n}{2}[2+2n-2]=\frac{n}{2}[2n]=n^{2}$

