NEET MODEL QUESTION PAPER 1

NATIONAL TESTING AGENCY
Excellence in Assessment

PHYSICS

1. Variation of photoelectric current with collector plate potential for different frequencies of incident radiations is shown in the graph. Then :
1) $v_{1}>v_{2}>v_{3}$
2) $v_{3}>v_{2}>v_{1}$
3) $v_{1}=v_{2}>v_{3}$
4) $v_{2}=v_{3}>v_{1}$
2. A heat engine has an efficiency $\boldsymbol{\eta}$. Temperatures of source and sink are each each decreased by 100 K . The efficiency of the engine
1) Increases
2) Decreases
3) Remains constant
4) Becomes 1
3. In the following circuit, the current flowing through $1 \mathrm{~K} \Omega$ resister is :
1) 0 mA
2) 5 mA
3) 10 mA
4) 15 mA
4. A and B are two points on a uniform ring of resistance 15Ω. The $\angle A O B=$ 45°. The equivalent resistance between A and B is C
1) 1.64Ω
2) 2.84Ω

3) 4.57Ω
4) 2.64Ω
5. In the nuclear decay given below:
${ }_{A}^{Z} X \rightarrow{ }_{Z+1}^{Z} Y \rightarrow{ }_{Z-1}^{A-4} B \rightarrow{ }_{Z-1}^{A-4} B$, the particles emitted in the sequence are:
1) γ, β, α
2) β, γ, α
3) α, β, γ
4) β, α, γ
6. A quantity X is given by $\varepsilon L \frac{\Delta V}{\Delta T}$ where ε_{0} is the permittivity of the free space, L is a length, ΔV is a potential difference and Δt is a time interval. The dimensional formula for X is the same as that of
1) resistance
2) charge
3) voltage
4) current
7. Two identical coherent sources are placed on a diameter of a circle of radius R at separation $x(\ll R)$ symmetrically about the centre of the circle. The sources emit identical wavelength λ each. The number of poi8nts on the circle with maximum intensity is : $(x=5 \lambda)$
1) 20
2) 22
3) 24
4) 26
8. The focal length of lenses of an astronomical telescope are 50 cm and 5 cm . The length of the telescope when the image is formed at the least distance of distinct vision is
1) 45 cm
2) 55 cm
3) $\frac{275}{6} \mathrm{~cm}$
4) $\frac{325}{6} \mathrm{~cm}$
9. An astronomical telescope has an angular magnification of magnitude 5 for distant objects. The separation between the objective and the eyepiece is 36 cm and the final image is formed at infinity. The focal length $\boldsymbol{f}_{\mathbf{0}}$
of the objective and $\boldsymbol{f}_{\boldsymbol{e}}$ of the eye-piece are respectively:
1) 45 cm and p cm
2) 50 cm and 10 cm
3) 7.2 cm and 5 cm
4) 30 cm and 6 cm
10. In Young's double slit experiment distance between two sources is 0.1 mm . The distance of screen from the source is 20 cm . Wavelength of light used is $5460 A^{0}$. Then, angular position of the first dark fringe is approximately
1) 0.08°
2) 0.16°
3) 0.20°
4) 0.31°
11. A luminous object is placed at distance of $\mathbf{3 0} \mathbf{~ c m}$ from a convex lens of focal length 20 cm . On the other side of the lens, at what distance from the lens must a convex mirror of radius of curvature 10 cm be placed in order to have upright image of the object coincident with it?
1) 30 cm
2) 60 cm
3) 50 cm
4) 12 cm
12. In an experiment four quantities a, b, c and d are measured with percentage error $1 \%, 2 \%, 3 \%$ and respectively, Quantity P is calculated as follows $P=$ $\frac{a^{3} b^{2}}{c d} \%$ error in the measurement of P is:
1) 4%
2) 14%
3) 10%
4) 7%
13. In an electrical circuit R, L, C and ac voltage source are all connected in series. When L is removed from the
circuit, the Phase difference between the voltage and the current in the circuit is $(\pi / 3)$. If instead, C is removed from the circuit the phase difference is again $(\pi / 3)$. The power factor of the circuit is :
1) $\frac{1}{2}$
2) $\frac{1}{\sqrt{2}}$
3) 1
4) $\frac{\sqrt{3}}{2}$
14. A Boy throws n balls per second at regular time intervals. When the first ball reaches the maximum height he throws the second one vertically up. The maximum height reached by each ball is
1) $\frac{g}{2(n-1)^{2}}$
2) $\frac{g T M}{2 n^{2}}$
3) $\frac{g}{n^{2}}$
4) $\frac{g}{n}$
15. The percentage increase in the magnetic field B when the space within a current carrying toroid is filled with aluminium (the susceptibility of aluminium $=\left(2.1 \times 10^{-5}\right)$ is :
1) 10^{-3}
2) 2.1×10^{-3}
3) 4×10^{-3}
4) 3×10^{-3}
16. A bird moves in such a way that it has a displacement of 12 m towards east, 5 m towards north and 9 m vertically upwards. Find the magnitude of its displacement
1) $5 \sqrt{2} \mathrm{~m}$
2) $5 \sqrt{10} \mathrm{~m}$
3) $5 \sqrt{5} \mathrm{~m}$
4) 5 m
17. A portion is released from rest in a region of steady and uniform electric and magnetic fields which are parallel to each other. The particle will move in a:
1) straight line
2) circle
3) helix
4) cycloid
18. A particle moves along a straight line $O X$. At a time t (in seconds) the distance x (in metres) of the particle is given by $x=40+12 t-t^{3}$. How long would the particle travel before coming to rest?
1) 24 m
2) 40 m
3) 56 m
4) 16 m
19. An electron of mass m is accelerated through a potential difference of V and then it enters a magnetic field of Induction B normal to the field. Then, the radius of the circular path is:
1) $\sqrt{\frac{2 e V}{m}}$
2) $\sqrt{\frac{2 V m}{e B^{2}}}$
3) $\sqrt{\frac{2 V m}{e B}}$
4) $\sqrt{\frac{2 e V}{e^{2} B}}$
20. A Ball is thrown at an angle θ and another ball is thrown at an angle $\left(90^{\circ}-\theta\right)$ with the horizontal from the same point with same speed $40 \mathrm{~ms}^{-1}$. The second ball reaches 50 m higher than the first ball. Find their individual heights?
1) $15 \mathrm{~m}, 65 \mathrm{~m}$
2) $25 \mathrm{~m}, 75 \mathrm{~m}$
3) $10 \mathrm{~m}, 60 \mathrm{~m}$
4) $20 \mathrm{~m}, 70 \mathrm{~m}$
21. Two identical electric conductors A and B have the same length L and
carry the same current I. Wire A is bent into a circle of radius and wire B is bent to form a square of side a. If B_{1} and B_{2} are the values of magnetic induction at the centre of the circle and the centre of the square respectively, then the ratio of B_{1} / B_{2} is:
1) $\left(\pi^{2} / 8\right)$
2) $\left(\pi^{2} / 8 \sqrt{2}\right)$
3) $\left(\pi^{2} / 16\right)$
4) $\left(\pi^{2} / 16 \sqrt{ } 2\right)$
22. Sand is being dropped on a conveyor belt at the rate of $M \mathrm{~kg} / \mathrm{s}$. The force necessary to keep the belt moving with a constant velocity of $v \mathrm{~m} / \mathrm{s}$ will be
1) Zero
2) Mv newton
3) 2 My newton
4) $\mathrm{Mv} / 2$ newton
23. A 30 W .15 V filament b8ulb is operated by using m cells, each of emf $2 V$ and internal resistance 0.5Ω connected in series. The value of m for which the bulb consumes its rated power is :
1) 5
2) 8
3) 7
4) 15
24. A balloon with mass m is descending down with an acceleration a (where $\mathbf{a}<\mathrm{g}$). How much mass should be removed from it so that it starts moving up with an acceleration a?
1) $\frac{2 m a}{g+a}$
2) $\frac{2 m a}{g-a}$
3) $\frac{m a}{g+a}$
4) $\frac{m a}{g-a}$
25. Figure shows three similar lamps L_{1}, L_{2} and L_{3} connected across a power supply. If the lamp L_{3} fuses, how will the light emitted by L_{1} and L_{2} change?

1) No change
2) Brilliance of L_{1}, decreases and that of L_{2} increases.
3) Brilliance of both L_{1} and L_{2} increases.
4) Brilliance of both L_{1} and L_{2} decreases.
26. Power applied to a particle varies with time as $P=\left(3 t^{2}-2 t+1\right)$ watt, where t is in second. Find the change in its kinetic energy between $t=2 s$ to t $=4 \mathrm{~s}$
1) 32 J
2) 46 J
3) 61 J
4) 120 J
27. In the series combination of \boldsymbol{n} cells, each cell is having emf E and internal resistance r. If three cells are wrongly connected then effective emf and internal resistance of the combination will be:
1) $n E$, $(n r-3 r)$
2) $(n E-2 E), n r$
3) $(n E-4 E), n r$
4) $(n E-6 E), n r$
28. A stone tied to a string of length L is whirled in a vertical circle, with the other end of the string at the centre. At a certain instant of time, the stone is as its lowest position and has a speed u. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is :
1) $\sqrt{u^{2}-2 g L}$
2) $\sqrt{2 g l}$
3) $\sqrt{u^{2}-g L}$
4) $\sqrt{2\left(u^{2}-g L\right.}$
29. Figure shows a circuit with three ideal batteries in it. The circuit elements have the following values:

$\Delta V_{B_{1}}=3.0 \mathrm{~V}, \Delta V_{B_{2}}=6.0 \mathrm{~V}$
$R_{1}=2.0 \Omega, R_{2}=4.0 \Omega$
The currents i_{1}, i_{2} and i_{3} as shown in the circuit have the values:
1) $0.50 \mathrm{~A},-0.25 \mathrm{~A},+0.25 \mathrm{~A}$
2) $0.25 \mathrm{~A},-0.50 \mathrm{~A},-0.25 \mathrm{~A}$
3) $0.50 \mathrm{~A}, 0.50 \mathrm{~A}, 1.0 \mathrm{~A}$
4) $-0.25 \mathrm{~A}, 0.50 \mathrm{~A}, 0.25 \mathrm{~A}$
30. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of 2 m / s. The mass per unit length of water in the pipe is $100 \mathrm{~kg} / \mathrm{m}$. What is the power of the engine?
1) 400 W
2) 200 W
3) 100 W
4) 800 W
31. A capacitor of capacitance $1 \mu F$ withstands a maximum voltage of 6 KV , while another capacitor of capacitance $2 \mu F$, the maximum voltage 4 KV . If they are connected in series, the combination can withstand a maximum of
1) 6 KV
2) 4 KV
3) 10 KV
4) 9 KV
32. Two particles each of mass m travelling along the same direction with velocities u_{1} and u_{2} collide perfectly in-elastically. The loss of kinetic energy will be
1) $\frac{1}{2} m\left(u_{1}-u_{2}\right)^{2}$
2) $\frac{1}{4} m\left(u_{1}-u_{2}\right)^{2}$
3) $m\left(u_{1}-u_{2}\right)^{2}$
4) $2 m\left(u_{1}-u_{2}\right)^{2}$
33. Three plates A, B, C each of area $50 \mathrm{~cm}^{2}$ have separation 3 mm between A and B and 3 mm between B and C. The energy stored when the plates are fully charged is:

1) $7.4 \times 10^{-6} \mathrm{~J}$
2) $14.75 \times 10^{-8} \mathrm{~J}$
3) $7.4 \times 10^{-9} \mathrm{~J}$
4) $14.75 \times 10^{-10} \mathrm{~J}$
34. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{\imath}+2 \hat{\jmath}+\widehat{k}$ and $-3 \hat{\imath}-$ $2 \hat{\jmath}+\widehat{k}$, respectively. The centre of mass of this system has position vector
1) $-2 \hat{\imath}+2 \hat{k}$
2) $-2 \hat{\imath}-\hat{\jmath}+\hat{k}$
3) $-2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
4) $-\hat{\imath}+\hat{\jmath}+\hat{k}$
35. Four charges 2C, - 3C, - 4C and 5C respectively are placed at the four corners of a square. Which of the following statements is true for the point of intersection of the diagonals?
1) Electric field is zero but electric potential is non-zero
2) Electric field is non-zero but electric potential is zero.
3) Both electric field and electric potential are zero.
4) Neither electric field not electric potential is zero.
36. A rod $P Q$ of mass M and length L is hinged at end P. The rod is kept horizontal by a massless string tied to point Q as shown in figure. When string is cut, the initial angular acceleration of the rod is
1) $\frac{3 g}{2 L}$
2) $\frac{g}{L}$
3) $\frac{2 g}{L}$

4) $\frac{2 g}{3 L} \mathrm{M}$
37. An open pipe is in resonance in its $2^{\text {nd }}$ harmonic with a tuning fork of frequency f_{1}. Now it is closed at one end. If the frequency of the tuning fork is increased gradually from f_{1}, then again a resonance is obtained with a frequency f_{2}. In this case if the pipe vibrates in $\mathbf{n}^{\text {th }}$ harmonic, then:
1) $n=3, f_{2}=\frac{3}{4} f_{1}$
2) $n=3, f_{2}=\frac{5}{4} f_{1}$
3) $n=5, f_{2}=\frac{5}{4} f_{1}$
4) $n=5, f_{2}=\frac{3}{4} f_{1}$
38. A simple pendulum with a brass bob has a period T. The bob is now immersed in a non-viscous liquid and oscillated. If the density of the liquid is $1 / 8^{\text {th }}$ of brass, the time period of the same pendulum will be
1) $\sqrt{\frac{8}{7}} T$
2) $\frac{8}{7} T$
3) $\frac{64}{49} \mathrm{~T}$
4) T
39. A particle of mass m is located in a one dimensional potential field where potential energy is given by $\boldsymbol{U}(\boldsymbol{x})=$ $A(1-\cos p x)$, where A and p are constants. The period of small oscillations of the particle is:
1) $2 \pi \sqrt{\frac{m}{A p}}$
2) $2 \pi \sqrt{\frac{m}{A p^{2}}}$
3) $2 \pi \sqrt{\frac{m}{A}}$
4) $\frac{1}{2 \pi} \sqrt{\frac{A p}{m}}$
40. An external pressure P is applied on a cube at $0^{\circ} C$ so that it is equally compressed from all sides. K is the bulk modulus of the material of the cube and α is its coefficient of linear expansion. Suppose we want to bring the cube to its original size by heating. The temperature should be raised by
1) $\frac{3 \alpha}{P K}$
2) $3 P K \alpha$
3) $\frac{P}{3 \alpha K}$
4) $\frac{P}{\alpha K}$
41. The displacement of a particle varies according to the relation is $x=$ $4(\cos \pi t+\sin \pi t)$ then the amplitude of the particle is
1) 8
2) -4
3) 4
4) $4 \sqrt{2}$
42. Water rises to height ' h ' in capillary tube. If the length of capillary tube above the surface of water is made less than ' h ' then
1) water does not rise at all
2) water rise to the tip of capillary tube and then starts overflowing like a fountain
3) water rises up to the top of capillary tube and stays there without overflowing
4) water rises up to a point a little below the top and stays there
43. Calculate the ratio of the mean free path of the molecules of two gases having molecular diameters $1 A^{0}$ and $2 A^{0}$. The gases may be considered under identical conditions of temperature, pressure and volume.
1) $4: 1$
2) $1: 4$
3) $2: 1$
4) $1: 2$
44. Four molecules of a gas are having speeds $1 \mathrm{~m} / \mathrm{sec}, 4 \mathrm{~m} / \mathrm{sec}, 8 \mathrm{~m} / \mathrm{sec}$ and $16 \mathrm{~m} / \mathrm{sec}$ respectively. The root mean square velocity of the gas molecules is
1) $7.25 \mathrm{~m} / \mathrm{s}$
2) $52.56 \mathrm{~m} / \mathrm{s}$
3) $84.25 \mathrm{~m} / \mathrm{s}$
4) $9.2 \mathrm{~m} / \mathrm{s}$
45. In Carnot engine efficiency is 40% at hot reservoir temperature T. For efficiency to be 50%, what will the temperature of hot reservoir?
1) $\frac{T}{5}$
2) $\frac{2 T}{5}$
3) 6 T
4) $\frac{6 T}{5}$

CHEMISTRY

46. Excess of SO_{2} gas is passed through aqueous solution of NaOH . The resultant solution contains the following ions along with $\mathbf{N a}^{+}$ions.
1) SO_{3}^{2-} ions only
2) HSO_{3}^{-}ions only
3) both SO_{3}^{2-} and HSO_{3}^{-}ions
4) SO_{4}^{2-} ions only
47. Assertion (A): Chlorobenzene is less reactive than benzene towards electrophilic substitution reactions Reason (R) Chlorine has ' + M' effect in chlorobenzene
1) Both A and R are correct. R is the correct explanation of A .
2) Bothe A and R are correct. R is not the correct explanation of A .
3) A is true but R is false
4) A is false but R is true
48. In which of the following stronger hydrogen bonds are present
1) $\mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
4) NH_{3}
49. 34 gm of $\mathrm{H}_{2} \mathrm{O}_{2}$ is present in 1120 ml of solution. This solution is called
1) 10 vol solution
2) 20 vol solution
3) 34 vol solution
4) 32 vol solution
50.

The fundamental groups present in \mathbf{Y} are

1) $-\mathrm{CHO},-\mathrm{COOH}$
2) $-\mathrm{OH},-\mathrm{CHO}$
3) $-\mathrm{OH},-\mathrm{COOH}$
4) $-\mathrm{CO}-,-\mathrm{COOH}$
51. $\mathrm{CH}_{3} \mathrm{CL} \xrightarrow[\text { dry ether }]{\mathrm{No}} A . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl} \xrightarrow[\text { dry ether }]{\mathrm{Mg}}$ $B \xrightarrow{\mathrm{CH}_{3} \mathrm{OH}} C$. The organic compounds A and C are
1) Functional isomers
2) Same compounds
3) Homologues
4) Metamers
52. Which of the following acts as a bleaching agent
1) Javelle water
2) Moist Cl_{2}
3) Dry O_{3}
4) All
53. Stability of the species $L i_{2}, L i_{2}^{-}$and L_{i}^{+}increases in the order of
1) $L i_{2}<L i_{2}^{+}<L i_{2}^{-}$
2) $L i_{2}^{-}<L i_{2}^{+}<L i_{2}$
3) $L i_{2}<L i_{2}^{-}<L i_{2}^{+}$
4) $L i_{2}^{-}<L i_{2}<L i_{2}^{+}$
54. $\boldsymbol{L n}_{\mathbf{2}} \boldsymbol{C}_{\mathbf{3}}$ (or) LnC liberate
1) H_{2} on reaction with dilute acid
2) CO on reaction with boiling water
3) CO_{2} on reaction with cold water
4) all
55. Ethanal + Propanal $\xrightarrow[\Delta]{\text { dil alkali }} A+$ $B+C+D$. The product cannot be
1) 2-butenal
2) 3-Hexenal
3) 2-Pentenal
4) 2-methyl-2-pentenal
56. In Castner - Kellner ce4ll the products formed at cathode and anode are respectivey
1) $\mathrm{NaOH}, \mathrm{Cl}_{2}$
2) $\mathrm{Cl}_{2}, \mathrm{H}_{2}$
3) $\mathrm{Na}-\mathrm{Hg}, \mathrm{Cl}_{2}$
4) $\mathrm{Na}, \mathrm{Cl}_{2}$
57. 0.4 gm of an organic compound gave 0.188 gm of AgBr by halogen estimation method. The percentage of bromine in the compound is (at. Wt. of $\mathbf{A g}=108, \mathrm{Br}=\mathbf{8 0}$)
1) 20
2) 40
3) 46
4) 60
58. $\mathrm{Fe}^{3+}+\mathrm{SCN}^{-} \leftrightharpoons[\mathrm{Fe}(\mathrm{SCN})]^{2+}(\mathrm{aq})$. For this aqueous solution if $\mathrm{FeCl}_{3(s)}$ is added then
1) intensity of deep red colour increases
2) intensity of yellow colour increases
3) No change in colour takes place
4) solution becomes colourless
59.

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[273 \mathrm{~K}]{\mathrm{NaNo}_{2}+\mathrm{HCl}} \mathrm{X} \xrightarrow{\mathrm{H}_{3} \mathrm{PO}_{2} / \mathrm{H}_{2} \mathrm{O}} \mathrm{Y} \xrightarrow[\mathrm{AlCl}_{3}]{\mathrm{CO}+\mathrm{HC}}, Z$.
Z is

1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
4) $\mathrm{C}_{6} \mathrm{H}_{6}$
60. The volume of O_{2} liberated at S.T.P when excess SO $_{2(g)}$ reacts with one mole of O_{3} is
1) zero
2) 22.4 L
3) 11.2 L
4) 67.2 L
61. The compound that is not a Lewis acid is
1) $B F_{3}$
2) AlCl_{3}
3) BeCl_{2}
4) CCl_{4}
62. Statement $-\mathrm{I}: \mathrm{NH}_{3}$ is a strong reducing agent while BiH_{3} is a weak reducing agent

Statement - II: NH_{3} gives deep blue colour with cupric ion is aqueous solution

1) both statements - I and II are correct
2) statement I is correct and statement II is incorrect
3) statement $-I$ is incorrect and statement - II is correct
4) both statements - I and II are incorrect
63. $X \xrightarrow[(b) H^{+}]{(a) K M n O_{4}}$. Terephthalicacid X is
1) 1,4-dimethyl benzene
2) 1,3-dimethyl benzene
3) 1,2-dimethyl benzene
4) ethyl benzene
64. Under standard conditions, the heats of atomization of $\mathrm{N}_{2(\mathrm{~g})} \mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{NH}_{3(\mathrm{~g})}$ are $945 \mathrm{KJ} /$ mole, $436 \mathrm{Kj} /$ mole and $1170 \mathrm{KJ} / \mathrm{mole}$. If the standard heat of formation of $\boldsymbol{N}_{2} \mathrm{H}_{4(\mathrm{~g})}$ is +106 $\mathrm{KJ} / \mathrm{mole}$, then the $\mathrm{N}-\mathrm{N}$ bond strength is
1) $151 \mathrm{KJ} / \mathrm{mole}$
2) $302 \mathrm{KJ} / \mathrm{mole}$
3) $75.5 \mathrm{KJ} / \mathrm{mole}$
4) $226.5 \mathrm{KJ} / \mathrm{mole}$
65. Which of the following is nonaromatic compound
1)

2)

3)

4)

66. Which of the following result in a single ketone product following acid catalysed hydration in presence of $\boldsymbol{H g}^{2+}$ ions

1) 3 - octyne
2) 2 - octyne
3) 1- octyne
4) 4 - octyne
67. $\mathrm{XeF}_{6}+\mathrm{MF} \rightarrow \mathrm{M}^{+}\left[\mathrm{XeF}_{7}\right]^{-}$. Here " $\mathrm{M"}^{\prime}$ is
1) Alkali metals
2) Alkaline earth metals
3) Transition metals
4) Inner transition metals
68. The repeating structural unit present in condensation chain polymer of silicones is
1) $\left(\mathrm{R}_{2} \mathrm{SiO}_{2}\right)$
2) $\left(\mathrm{R}_{2} \mathrm{SiO}\right)$
3) $\left(\mathrm{O}-\mathrm{SiR}_{2}-O\right)$
4) $\left(R_{3} S i-O\right)$
69. 8 moles of $A B_{2}$ are introduced into 1 lit vessel. It dissociates as $2 A B_{3}(g) \rightleftharpoons$ $A_{2}(g)+3 B_{2}(g)$ at equilibrium 2 moles of A_{2} is found to be present. The equilibrium constant for the reaction is
1) 2 moles $^{2} /$ lit 2
2) 3 moles $^{2} /$ lit 2
3) $27 \mathrm{moles}^{2} / \mathrm{lit}^{2}$
4) $36 \mathrm{moles}^{2} / \mathrm{lit}^{2}$
70. Which of the following electrolytic solution has more limiting molar conductivity at $\mathbf{2 9 8 K}$
1) $H C L_{(a q)}$
2) $\mathrm{NaCl}_{(a q)}$
3) $\mathrm{NaOH}_{(a q)}$
4) $\mathrm{CH}_{3} \mathrm{COONa}_{(a q)}$
71. The products obtained by the hydrolysis of lactose are
1) D-glucose and D-galactose
2) D-glucose and D-fructose
3) Saccharic acid and gluconic acid
4) D-glucose only
72. Match the following

Column - I Column -II
A. Equanil
I. Anibacterial
B. Prontosil
II. Tranquilizer
C. BrompheniramineIII. Antidepressant
D. Veronal
IV. Antihistamine

The correct match is

1) A-III, B-I, C-II, D-IV
2) A-II, B-III, C-I, D-IV
3) A-III, B-I, C-IV, D-II
4) A-III, B-II, C-IV, D-I
73. The coefficients of $\mathrm{I}^{-}, \mathrm{IO}_{3}^{-}$and H^{+}om the reaction $\mathrm{I}^{+}+\mathrm{IO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+$ $\mathrm{H}_{2} \mathrm{O}$ in the balanced form respectively are
1) $5,1,6$
2) $1,5,6$
3) $6,1,5$
4) $5,6,1$
74. $E_{C d^{2+} / C d}^{0}=-0.40 \mathrm{~V}, E_{\mathrm{Hg}_{2} \mathrm{SO}_{4} / 2 \mathrm{Hg}}^{0}=$ +0.62 V . For the spontaneous cell reaction $E_{\text {cell }}^{0}$ is
1) +0.71 V
2) +1.02 V
3) +0.22 V
4) -0.22 V
75. Which of the following is a cationic complex?
1) Potassium ferrocyanide
2) Cryolite
3) Cuprammonium (II) sulphate
4) Sodium argento thiosulphate
76. Which of the following is not reactive towards $\boldsymbol{C l}_{2}$ at moderate temperatures
1) NaH
2) CsH
3) KH
4) LiH
77. The statements regarding diborane are
i) $B_{2} H_{6}$ is stable in the absence of grease and moisture at low temperature
ii) $\mathrm{B}_{2} \mathrm{H}_{6}$ burns in oxygen to produce a very high temperature
iii) Borazole contains ionic bonds
1) iii only is correct
2) I and ii are correct
3) I and iii are correct
4) ii and iii are correct

78.

(ii) EtOH

Here ' X ' is

79. Drugs that bind to the receptor site inhibit its natural function are called

1) Antagonists
2) Agonists
3) Drug inhibitor
4) Competitive inhibitor
80. The $\boldsymbol{p}^{0 H}$ of the solution in which 0.1 M $\mathrm{NH}_{4} \mathrm{Cl}$ and $0.1 \mathrm{M} \mathrm{NH}_{3}$ are present in one litre solution is
(${ }^{\mathbf{K b}}$ of NH_{3} is 4.75)
1) 4.75
2) 8.95
3) 9.25
4) 5.05
81. In the density of the solution is $\mathbf{3 . 1 2}$ $\mathrm{gm} / \mathrm{ml}$ then express the mass of 1.5 ml solution in significant figures.
1) 4.7 gm
2) $4680 \times 10^{-3} \mathrm{gm}$
3) 46.80 gm
4) 4.680 mg
82. Which of the following has more number of hybrid orbitals around the central atom
1) XeO_{3}
2) $X e F_{2}$
3) $X e F_{4}$
4) XeO_{4}
83. Slag formed in copper metallurgy is
1) MnSiO_{3}
2) FeSiO_{3}
3) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
4) MgSiO_{3}
84. In haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right), \mathrm{O}^{2-}$ ions have CCP arrangement while Fe^{3+} ions occupying interstitial positions. If ionic radii of Fe^{3+} and O^{2-} are $0.56 \mathrm{~A}^{\circ}$ and $1.4 A^{\circ}$ then in the crystal
1) Fe^{3+} ions occupy $2 / 3$ of tetrahedral voids
2) Fe^{3+} ions occupy all the edge centres
3) Fe^{3+} ions occupy $2 / 3$ of octahedral voids
4) $F e^{3+}$ ions occupy all octahedral voids
85. The term that is correct for the attractive forces present in a real gas in the vander Waals equation is
1) nb
2) $-\frac{a n^{2}}{v^{2}}$
3) $-n b$
4) $\frac{a n^{2}}{v^{2}}$
86. Which of the following does exhibit tautomerism
i) HNO_{2}
ii) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{COOC}_{2} \mathrm{H}_{5}$
iii) $\mathrm{H}_{2} \mathrm{SO}_{3}$
iv)

1) All
2) Both iii and iv
3) Both ii and iv
4) I, iii and iv
87. Gold numbers of protective colloids A,
B, C and D are $0.50,0.01,0.10$ and 0.005 respectively. The correct order of their protective power is
1) C $<$ B $<$ D $<$ A
2) A $<$ C $<$ B $<$ D
3) A $<$ B $<$ C $>$ D
4) D $<$ A $<$ C $>$ B
88. Among the following the surfactant that will form miscelles in aqueous solution at lowest molar concentration at ambient conditions is
1) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3} \mathrm{Na}$
2) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}$
3) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}$
4) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COONa}$
89. A metal has fcc lattice. The edge length of the unit cell is $\mathbf{4 0 4} \mathbf{~ P m}$. The density of the metal is $2.72 \mathrm{gm} / \mathrm{cc}$, the molar mass of the metal is
1) $40 \mathrm{gm} / \mathrm{mol}$
2) $30 \mathrm{gm} / \mathrm{mol}$
3) $27 \mathrm{gm} / \mathrm{mol}$
4) $20 \mathrm{gm} / \mathrm{molo}$
90. $\mathrm{Ag}_{2} S \xrightarrow[\text { roasting }]{\text { chloridised }} X$ (compound of silver) $\xrightarrow{1 \% \operatorname{NaCN}_{(a q)}} Y($ complex)
$\xrightarrow{Z n} Z_{(s)}$. Incorrect statement regarding to the sequence of the reactions is
1) Formation of Y from X is known as leaching
2) Function of Zn is an oxidizing agent
3) Formation of Z from Y is known as hydrometallurgy
4) NaCN is complexing agent

BOTANY

91. Removal RNA polymerase II will effect the synthesis of
1) tRNA
2) hnRNA
3) rRNA
4) Adaptor RNA
92. (A) - A is an unicellular eukaryotic organism in which cell wall forms two thin overlapping shells
(B) - B is shown by (A). A and B respectively are
1) A - Dino flagellates B-Auxospore formation in sexual life cycle
2) A-Chrysophytes, B-Red sea formation
3) A-Diatoms, B-Asexual reproduction takes place by binary fission
4) A-Chrysophytes B-Red tides formation
93. Which of the following is not correctly matched?

Mode of reproduction	Example
1. Gemmae	Marchantia
2. Conidia	Alternaria
3. Offset	Water Lily
4. Rhizome	Lotus

94. Read the following lists and find out the correct match

List - I
List II
A) Robert Hooke
I) $20^{\text {th }}$ century
B) Mendel
II) $18^{\text {th }}$ century
C) Stephen Hales
III) $19^{\text {th }}$ century
D) F.W. Went
IV) $16^{\text {th }}$ century
V) $17^{\text {th }}$ century

1) A-V, B-III, C-I, D-II
2) A-II, B-I, C-III, D-V
3) A-V, B-II,C-III, D-IV
4) A-V, B-III, C-II, D-I
95. At what stage of the cell cycle are histone proteins synthesized in a eukaryotic cells
1) G phase
2) S Phase
3) G_{2} Phase
4) early prophase
96. The event as precursor to seed habit is
1) Presence of similar kind of spores
2) Development of monoecious gametophyte
3) Differentiated sporophyte with true root, stem and leaves
4) Development of zygote into young embryo with in the female gametophyte
97. Respiratory Quotient value of a respiratory substrate
1) Directly proportional to Carbon to oxygen ratio
2) Directly proportional to oxygen to carbon ratio
3) Inversely proportional to carbon to hydrogen ratio
4) Inversely proportional to hydrogen to oxygen ratio
98. Unique feature of algae and angiosperms respectively
1) Absence of vascular tissue, presence of double fertilization
2) Absence of embryo, presence of fruits
3) Presence of antheridia, presence of vascular tissue
4) Zygotic meiosis, presence of embryo
99. A monopoly granted to a person who has either invented a new and useful article, made improvement in an
existing article or invented a new process of making an article is called
1) Biomanipulation
2) Bioethies
3) Biopiracy
4) Patent

100. Find out the wrong statemen

1) Apical meristems are found in toot apex and leaf apex
2) Turgidity helps in cell growth
3) Delphinium shows developmental heterophylly
4) Secondary growth is found in toots and stems of dicots and gymnosperms
101. A biochemical reaction found in Krebs cycle but not in EMP pathway is
1) Cleavage
2) Dehydration
3) Substrate level Phosphorylation
4) Decarboxylation
102. Identify the incorrect statement
1) A pair of fleshy fruits which develop from inferior ovaries-Pepo and pome
2) A pair of fleshy fruits which developr from superior ovaries-Hesperidium and Drupe
3) A pair of dry fruits which develop from monocarpellary ovaries-Nut and cypsela
4) A pair of dry indehiscent fruitsCaryopsis and nut
103. Consider the following statements and select the false statement
1) Amino acids are substituted methane compounds
2) Trihydroxy propane is a complex liquid
3) Uracil, Cytosine and thymine are substituted pyrimidines
4) Cell walls of fungi are made up of a homopolymer, chitin
104. The plant having whorled phyllotaxy and polychasial cymose inflorescence
1) Solanum
2) Jasmine
3) Ipomaea
4) Nerium
105. Statement I-Micronutrients are called essential elements because they are required only in trace quantities
Statement II - Trace elements are as important as major nutrients though they are required in minute quantities.
1) Both Statement I and Statement II are true
2) Both Statement I and Statement II are false
3) Only Statement I is false
4) Only Statement II is false
106. Assertion (A): Both true fruit and false fruit are edible in Anacardium occidental is

Reason (R): In Anacardium occidentalis true fruit develops only from the fertilized ovary and false fruit develops from pedicel

1) Both A and R are correct. R is the correct explanation of A .
2) Both A and R are correct. R is not the correct explanation of A.
3) A is true, but R is false
4) A is false, but R is true
107. Among china rose, mustard, brinjal, potato, guava, cucumber, onion and tulip, how many plants have superior ovary?
1) Three
2) Four
3) Five
4) Six
108. Internal fertilization occurs in
I) Majority of aquatic algae
II) Anginosperms
III) Pteridophytes
IV) Aquatic flowering plants
1) I, II \&III
2) I alone
3) I\& IV
4) II, III \& IV
109. Match the columns and identify the correct option

Column-I
A. Thylakoids
B. Cristae
C. Cisternae
D. Chromatin

Column - II
i) Disc-shaped sacs in Golgi apparatus
ii) Condensed structure of DNA
iii) Flat membranous sacs in stroma
iv) Infoldings in mitochondria

1) A -(iii), $\mathrm{B}-(\mathrm{i}), \mathrm{C}$-(iv), D -(ii)
2) A-(iii), B-(iv), C-(ii), D-(i)
3) A-(iv), B-(iii), C-(i), D-(ii)
4) A-(iii), B-(iv), C-(i), D-(ii)
110. Pollen pistil interaction does not include
I) Release of pollen from anther
II) Recognition of compatible or incompatible pollen
III) Germination or inhibition of growth of pollen tube
IV) Entry of pollen tube into ovule
V) Fusion of male and female gametes
1) I \& IV
2) III \& IV
3) $I \& V$
4) II \& III
111. Which of the following statements regarding cyclic flow of electrons during light reactions is false?
1) This process takes place in the stroma lamellae.
2) ATP synthesis takes place
3) $\mathrm{NADPH}+\mathrm{H}^{+}$is synthesized
4) Takes place only when light of wavelength beyond 680 nm is available for excitation.
112. Assertion (A) : R.N.A is labile and easily degradable

Reason (R) : DNA is evolved from RNA with chemical modifications that made it more stable

1) Both A and R are correct. R is the correct explanation of A .
2) Both A and are correct. R is not the correct explanation of A.
3) A is true, but R is false
4) A is false, but R is true
113. Study the following diagrams very carefully and recognize following diagrams very carefully and recognize them

I	II	III	IV
1) Polusiphonia	Focus	Salvia	Equisetum
2) Porphyra	Focus	Salvinia	Horsetail
3) Porphyra	Laminaria	Salvinia	Equisetum
4) Polysiphonia	Laminaria	Salvia	Horsetai

114. Floral formula of a flower is represented $\hat{+}, A_{(10)}, \underline{G}_{1}$ as. The correct description of these symbols is
1) Actinomorphic, bisexual, 10 free stamens, unilocular inferior ovary
2) Zygomorphic, unisexual, 10 fused stamens, monocarpellary inferior ovary
3) Zygomorphic, bisexual, 10 sused stamens, monocarpellary superior ovary
4) Actinomorphic, unisexual, 10 free stamens, uniovulate superior ovary
115. Which of the following is the most distinguishing feature of bryophytes?
1) Autotrophic gametophyte parasitized by sporogonium
2) Mostly homosporous, but, a few hererosporus
3) $1^{\text {st }}$ cell in the life of saprophyte is zygote.
4) Shows isomorphic alternation of generation
116. Which of the following statements is correct
1) In the members of Fabaceae first and third whorls of flower have cohesion of floral parts
2) In Solanaceae first, second, third and fourth whorls of flower show cohesion
3) In Liliaceae first (Ex: onion), second and third whorls of flower show cohesion
4) In all the above mentioned families the innermost whorl of flower show cohesion
117. How many of the following fungi are members of Basidiomycetes? Agaricus, Aspergillus, Alternaria, Puffballs, Claviceps, Ustilago, Puccinia, Albugo, Trichoderma, Edible Morel
1) 5
2) 4
3) 6
4) 7
118. Match the following

List-I	List -II
A) Ribosomes	I) Basal body of flagella 'or' cilia
B) Centrosomes	II) Maintenance of cell Shape
C) Cytoskeleton	III) Protein synthesis
D) Lysosomes	IV) Intra cellular Transport
	V) Digestion of cellular Contents

1) A-III, B-I, C-IV, D-II
2) A-III, B-I, C-II, D-IV
3) A-III, B-I, C-IV, D-V
4) A-III, B-II, C-IV, D-V
119. Which of the following statements are true w.r.t. bacteria?

ii) Glycocalyx differs in composition and thickness among different bacteria
iii) Fimbriae are elongated tubular structures formed of special protein, help in attachment of bacteria to host cell.
iv) Mesosome of bacteria is formed of extensions of plasma membrane in the cell anterior, in the form of viscicles, tubules and lamellae helping in anaerobic respiration
v) Polysome of bacteria is formed of one r-RNA attached to many ribosomes
1) (i) and (ii)
2) (i) and iv)
3) (ii), (iii) and (iv)
4) All except (ii)
120. Ratio between the carbons of alanine and serine aminoacids is
1) $1: 3$
2) $1: 2$
3) $3: 1$
4) $1: 1$
121. Consider the following statements.
I) Ladybirds and dragonflies are used to get rid of aphids and mosquitoes, respectively.
II) The bacteria Bacillus thuringiensis (Bt) are used as mycoherbictde.
III) Trichoderma sp., free living fungi, are present in root ecosystems where they act against several plant pathogens.
IV) Frankia is a symbiotic bacterium that lives in the root nodules of legumes.

Which of the statements given above are correct?

1) I, II and III
2) I, III and IV
3) II, III and IV
4) I and III only
122. Mitosis occurs in
I) Cells of root apex
II) Cells of stem apex
III) Fundamental megaspore of the plants
IV) Functional microspore of the plants
1) I, II
2) III, IV
3) I, II, III
4) I, II, III, IV
123. DNA replication enzymes are given below. Select their correct sequence in DNA replication.
I) Helicase
II) SSB
III) Primase
IV) DNA polymerase IV) DNA ligase
1) $\mathrm{I} \rightarrow \mathrm{V} \rightarrow \mathrm{IV} \rightarrow \mathrm{III} \rightarrow \mathrm{II}$
2) $\mathrm{I} \rightarrow \mathrm{II} \rightarrow \mathrm{III} \rightarrow \mathrm{IV} \rightarrow \mathrm{V}$
3) $\mathrm{I} \rightarrow \mathrm{III} \rightarrow \mathrm{II} \rightarrow$ IV $\rightarrow \mathrm{V}$
4) I \rightarrow IV \rightarrow III \rightarrow II \rightarrow V
124. Study the following lists with reference to dicot stem and grasses

A) Intrastelar primary lateral meristem involved in secondary growth	I) Intercalary meristem
B) Extra stellar secondary lateral meristem involved in secondary growth	II) Interfascicular cambium
C) The primary meristem Which occurs between mature tissue	III) Cork cambium

D) Intra stellar secondary
Intrafesicular Lateral meristem involved in secondary Growth

1) A-II, B-III, C-I, D-IV
2) A-IV, B-III, C-I, D-II
3) A-IV, B-III, C-II, D-I
4) A-III, B-IV, C-I, D-II
125. For a genes if $\mathbf{A A}=$ male plant, $\mathbf{a} \mathbf{a}=$ female plant. Find out the genotype of endosperm and embryo.
1) $\mathrm{AAa}, \mathrm{a} A \mathrm{~A}$
2) $\mathrm{AAa}, \mathrm{Aa}$
3) $\mathrm{Aaa}, \mathrm{Aa}$
4) $a a A, A A a$
126. Which of the following tissues is not a part of bark?

I) Vascular cambium

II) Cork Cambium

III) Secondary phloem
IV) Secondary xylem

1) II and III
2) I and IV
3) I, III and IV
4) I alone
127. Match the following columns

Column -I
Column - II
A. Clone
i) Agamospermy
B. Plant apomixes
ii) Not possible in sugarcane
C. Grafting
iii) Callus
D. Tissue culture
iv) Flower group
E. Inflorescence
v) identical plants

1) A-(v), B-(i), C-(ii), D-(iii), E-(iv)
2) A-(v), B-(i), C-(iii), D-(ii), E-(iv)
3) A-(i), B-(ii), C-(iii), D-(iv), E-(v)
4) A-(v), B-(ii), C-(iii), D-(iv), E-(i)
128. Assertion (A): The primary succession, is a slow process, taking maybe thousands of years for the climax to be reached
Reason (R): The pioneer species of
Xerarch sucession on bare rocks are usually Lichern
1) Both A and R are correct. R is the correct explanation of A .
2) Both A and R are correct. R is not the correct explanation of A .
3) A is true, but R is false
4) A is false, but R is true
129. Which of the following is incorrectly matched?
1) Explant \rightarrow Excised plant part used for callus formation
2) Cytokinin \rightarrow root initiation in callus
3) Somatic emryo \rightarrow Embryo produced from a vegetative cell
4) pollen culture \rightarrow Haploid plants
130. A genetically dwarf variety of pea is treated with Gibberellins and made taller plant. It is now crossed with a normal pure tall plant. All F_{1} plants are tall. The F_{1} plants are selfed and F_{2} generation is raised. Find out the ratio of tall \& dwarf plants in F_{2}
1) $3: 1$
2) $1: 1$
3) $1: 3$
4) $4: 0$
131. Match the following column
Column -I
Column - II
A. Human urine
B. Gibberella
i) Cytokinin
fujikori
C. Herring sperm
iii) Ethylene DNA
D. ripening fruit
iv) ABA
E. aging leaves of
v) GA plants
1) a-(ii), B-(iii), C-(iv), D-(v), E-(i)
2) a-(ii), B-(v), C-(i), D-(iii), E-(iv)
3) a-(i), B-(ii), C-(iii), D-(iv), E-(v)
4) a-(v), B-(iv), C-(iii), D(ii), E-(i)
132. A) The association RNA polymerase with initiation factor (σ) is transient during transcription in prokaryotes
B) Inheritance of a character is also affected by promoter and regulatory sequences of a structural gene
C) Presence of introns is probably the ancient feature of the genome
D) The enzyme polynucleaotide phosphorylase is used in polymerizing, RNA with defined sequences in a template dependent manner. The number of options correct are
1) 1
2) 2
3) 3
4) 4
133. Genre regulation governing lactose operon of E. coil that involves the lac I gene product is
1) Negative and repressible because repressor protein prevents transcription
2) Feedback inhibition because excess of β-galactosidase can switch off transcription
3) Positive and inducible because it can be induced by lactose
4) Negative and inducible because repressor protein prevents transcription.

134. Match the following

List - I
A) Pulsation theory
B) Facilated transport
C) Pressure - flow

Hypothesis
D) Cohesiontension mediated Transpiration pull Model

List -II

I) + Ve pull
II) Bio-electrical Responses of plant
III) -Ve pull
IV) Diffusion, by hormonal regulated proteins V) Munch

1) A-II, B-IV, C-V, D-I
2) A-II, B-IV, C-V, D-III
3) A-II, B-III, C-IV, D-V
4) A-II, B-I, C-IV, D-III
135. A major characteristic of dicot root is the presence of
1) vasculature without cambium
2) Cambium sandwiched between phloem and xylem along the radius
3) Collateral vascular bundles
4) Scattered vascular bundles

ZOOLOGY

136. Which one of the following is the correct difference between rod cells and cone cells of our retina?

		Rod Cells	Cone Cells
1)	Over all function	Vision of poor light	 detailed vision in bright light
2)	Distribution	More concentrated in centre of retina	Evenly distribution all over retina
3)	Visual pigment	Iodopsin	Rhodopsin

	contained		
4$)$	Visual acuity	High	Low

137. Which of the following is a method of birth control?
1) GIFT
2) IVF-ET
3) IUD
4) All of those
138. Match the types of cells listed under column I with the secretions given under column II. Choose the answer which gives the correct combination of alphabets of the two colums.

Column - I (Type of cells	Column - II (Secreations)
A) Beta cells	p) Lysozyme
B) Mast cells	q) Muscus
C) Peneth cells	r) Histamine
D) Acinar cells	s) Insulin
	t) Pancreatic enzyme

1) A-s, B-q, C-p, D-t
2) A-s, B-r, C-p, D-t
3) A-q, B-r, C-p, D-t
4) A-s, B-q, C-r, D-t
139. Read the following
a) Muscle contraction
b) Oxygen transportation
c) blood clotting
d) Electrical synaptic transmission
1) 1
2) 2
3) 3
4) 4
140. Which one is incorrect match?
1) Harderian glands-Modified sebaceous gland and secretion lubricates nictitating membrane
2) Paccinian corpuscles - Cutaneous receptor and for smooth touch.
3) Bowmans glands - Present just below the olfactory membrane of Schniderian membrane in order to lubricate and dissolve odoriferous particle.
4) Tapetum lucidum - A part of eye layer "Choroid" that contain guanine pigment and silvery coloured light is reflect at night.
141. Among the unisexual non-chlordates, fertilization is external in
1) Proifera
2) Nematoda
3) Hemichordata
4) Platyhelminthes
142. Lactic acid is generally formed in very fast acting muscle but exceptional muscle is
1) Muscle of Iris and pupil
2) No exception is found
3) Muscles of heart
4) Muscles of jaw
143. Which harmone does not help in erythropoiesis?
1) andogen
2) Thyroxine
3) Adrenaline
4) Cortisol
144. In an ornithine cycle, which of the following are removed from the blood?
1) Urea and uric acid
2) CO_{2} and ammonia
3) CO_{2} and urea
4) Ammonia and urea
145. Ancestor that is not in evolutionary lineage of mammal
1) Pelycosaur
2) Therapsid
3) Thecodont
4) Synapsids
146. Identify the incorrect statement.
1) True ribs are attached to sternum by costal cartilage
2) True ribs protect the kidneys
3) Vertebrochondral ribs articulate with costal cartilage of seventh rib.
4) Floating ribs are not attached to sternum
147. During undulation movement, if flagellum bends to one side and shows a wave like movement from the base to tip, the organism moves in this direction
1) laterally in the same direction
2) pushed in backward in backward direction
3) laterally in the opposite direction
4) pulled in forward in forward direction
148. Which one of the following is a fat soluble vitamin and its related deficiency disease?
1) Cobalamine - Beri-Beir
2) Retinol-Xerophthalmia
3) Calciferol - Pellagra
4) Ascorbic acid - Scurvy
149. Which one of following cranial nerve does not innervate the muscles of the eye ball?
1) Pathetic nerve
2) Abducens
3) Occulomotor
4) Spinal accessory nerve
150. Which of the following statement is incorrect?
1) Every 100 ml of oxygenated blood can deliver around 5 ml of O_{2} to the tissues under the normal physiological conditions
2) Minute quantites of carbonic anhydrase is present in the plasma too.
3) The role of Oxygen in the regulation of respiratory rhythms is quite significant.
4) Chemosensitive area is situated adjacent to the rhythm centre which is highly sensitive to CO_{2} and hydrogen ions.
151. Match the following with reference to Ascaris lumbicoides

List - I	List - II
A) Pineal setae	I) Formed after development
B) $2^{\text {nd }}$ stage rhabditiform larve	II) Produced in alveoli of lungs
C) $4^{\text {th }}$ stage rhabditifonn larve	III) Produced in small intestine
D) $1^{\text {st }}$ stage rhabditifonn larve	IV) Serve to transfer sperms
	V) Infective stage to man

1) A-IV, B-V, C-III, D-I
2) A-IV, B-V, C-II, D-I
3) A-V, B-IV, C-II, D-I
4) A-V, B-IV, C-I, D-III
152. Which of the following is incorrect about the given graph?

1) Increase in partial pressure of CO_{2} shift the curve to right.
2) At low temperature the curve shifts to left.
3) Decrease in partial pressure of oxygen shifts the curve to right.
4) At high pH the curve shifts to right.
153. Accumulation of dead filarial worms
block the lymph vessels and lymph glands of man resulting in immense swelling. The condition is called.
1) Lymphoedema
2) Lymphangitis
3) Lymphadentis
4) Elephantiasis

154. Match the following

Column -I
A) Functional

Residual capacity
B) Endopeptidases
C) Vital capacity
D) Pancreatic juice
E) Intestinal Juice

Column -II
i) Pepsin
ii) Elastase
iii) Nucleotidases
iv) Chymotrypsin
v) Tidal volume
vi) Residual volume
vii) Trypsonigen
ix) Nucleosidases
x) Expiratory reserve volume

	A	B	C	D	E
1)	v, vii, x	iii, ix	vi	i, ii	viii, ix
2)	vi, x	i, iv	v, viii, x	ii, viii	iii, ix
3)	v	I, iv	vi, vii, x	ii, iii	viii, ix
4)	vi, vii, x	I, iv	v	viii, ix	ii, iii

155. Which one of the following became extinct due to over exploitation by humans?
1) Loris tardigradus
2) Clarias gariepinus
3) Sus salvanius
4) Steller's sea cow
156. Systemic heart refers to
1) atria in lower vertebrates
2) the two ventricles together in humans
3) the heart that contracts under stimulation from nervous system
4) left auricle and left ventricle in higher vertebrates
157. Match the following and select the correct option
A. Johnston's
I) Ground vibration organs
B. Subgenual organs
C. Tympanal organs
E. Ocellar sport
II) Sound vibrations
II) Light intensity
IV) Movement of flagellae
1) A-IV, B-I, C-II, D-III
2) A-III, B-I, C-II, D-IV
3) A-IV, B-I, C-III, D-II
4) A-IV, B-II, C-III, D-I
158. You are required to draw blood from a patient and to keep in a test tube for analysis of blood corpuscles and plasma. You are also provided with the following four types of test tubes. Which of these will you not use for the purpose?
1) Chilled test tube
2) Test tube containing calcium bicarbonate
3) Test tube containing heparin
4) Test tube containing sodium oxalate
159. Which of the following character is not related to Indian chain viper?
1) Cranial nerves are 10 pairs
2) Jacobson's organs are highly developed
3) Penis is formed by the opposition of the two hemipenes
4) Gaseous exchange takes place through the vascular cloacal wall
160. Which one of the following statements is true for cockroach?
1) The number of ovarioles in each ovary are ten
2) The larval stage is called caterpillar
3) They are ureotelic
4) Anal styles are absent in females
161. Arrange the components of female reproductive system cockroach in correct sequence from anterior to posterior end
A) Vitellarium
B) Oviductus
C) Vagina
D) Germarium
1) D-A-B-C-E
2) A-D-B-C-E
3) D-A-C-B-E
4) A-D-B-E-C
162. 'Forest of nephridia' in earth worm refers to
1) $14^{\text {th }}$ and $15^{\text {th }}$ segment only
2) $1^{\text {st }}$ and $2^{\text {nd }}$ segments
3) $14^{\text {th }}$ to $16^{\text {th }}$ segments
4) $15^{\text {th }}$ and $16^{\text {th }}$ segments only
163. Six cervical vertebrae are seen in these mammal
1) Bradypus and Balaenoptera
2) Panthera and Pteropus
3) Trichechus and Choloepus
4) Choloepus and Bradypus
164. Histiocyte is a connective tissue cell, the function of which is
1) Secretion
2) Epidermal in function
3) Phagocytic
4) Fibre production
165. Both sinus venous and conus arteriosus are absent in
1) Avès, Mammals
2) Reptiles, Aves
3) Reptiles, Aves, Mammals
4) Fishes, Amphibians, Reptiles
166. Which of the following sets of animals belongs to the same class of phylum?
1) Hydra, jellyfish, crayfish
2) spider, scorpion, tick
3) bat, pigeon, whale
4) whale, shark, kagaroo
167. Choose the wrong statement with reference to water pollution
1) When micro organisms consume a lot of CO_{2} in water as a result there is a sharp decline in dissolved O_{2}
2) Natural ageing of a lake by nutrient enrichment of its water is known as eutrophication.
3) Thermal waste water eliminates eurythermal organisms such as fishes but not their juveniles.
4) Increase in the concentration of the pollutant or toxicant at successive trophic levels in an aquatic food chain is called bio-magnification.
168. Match column I with column II and select the correct option.

Column -I
A) Mammals
B) Aves
C) Reptilia
D) Osteichthyes
E) Chondrichthyes

Column -II
i) Scales
ii) Heterocercal
iii) Mammary Glands
iv) Homocercal
v) Pneumatic bones

1) A-I, B-iii, C-v, D-ii, E-iv
2) A-I, B-ii, C-iii, D-iv, E-v
3) A-iii, B-v, C-I, D-iv, E-ii
4) A-iii, B-v, C-I, D-ii, E-iv
169. Identify the Nematodes, which have highly modified amphids but without phasmids
1) Ascaris, Ancylostoma
2) Trichinella, Trichiuris
3) Trichiuris, Enterobius
4) Enterobius, Wuchereira
170. The tube within tube body plan is shown by
1) earthworms and sea cucumber
2) flatworms and roundworms
3) cnidarians and flatworms
4) sponges
171. Identify the correct sequence of various parts of earthworms's alimentary canal from anterior to posterior end
A) Oesophagus
B) Stomach
C) Buccal cavity
D) Pharynx
E) Gizzard
F) Intestinal caecae
1) $\mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{F} \rightarrow \mathrm{A}$
2) $\mathrm{D} \rightarrow \mathrm{A} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{F} \rightarrow \mathrm{C}$
3) $\mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{A} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{F}$
4) $\mathrm{D} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{E} \rightarrow \mathrm{B} \rightarrow \mathrm{F}$
172. In humans, what is the ratio of number of gametes produced by spermatogenesis
1) $1: 3$
2) $1: 1$
3) $4: 1$
4) $1: 4$
173. During the depolarization of nerve impulse, due to the rapid influx of Na^{+} ions into the axoplasm the membrane potential shoots rapidly up to
1) +45 mV
2) -70 mV
3) -55 mV
4) -45 mV
174. What is true about Siamese twins
1) Dizygotic twins, joined together.
2) Identical twins which were first borne is siam (Tailand)
3) Monozygotic twins, united in a small area
4) Both 2 and 3
175. Factors favourable for the formation of oxyhaemoglobin in alveoli are
1) high PO_{2}, low $\mathrm{pCO} \mathrm{O}_{2}$, low pH , lower temperature
2) high PO_{2}, low $p \mathrm{CO}_{2}$, low pH , high temperature.
3) high PO_{2}, low pCO , high pH , lower temperature
4) high PO_{2} low pCO_{2}, high pH , high temperature
176. Sertoli cells that nourishes spermatozoa are found
1) Between the somniferous tubules
2) In the upper part of the fallopian tube
3) In the germinal epithelium of ovary
4) In the germinal epithelium of the somniferous tubules
177. Oxytocin and vasopressin are synthesized by
1) Endocrine cells of neurohypophysis
2) Neurosecretory cells of epithalamus
3) Endocrine cells of adenohtypophysis
4) Neurosecretory cells of hypothalmus
178. Match the following
Column - I
Column -II
A) Sickle cell i) $7^{\text {th }}$ chromosome anaemia
B) Phenylketonuria
ii) $4^{\text {th }}$ chromosome
C) Cystic fibrosis
iii) $11^{\text {th }}$
chromosome
D) Huntington's iv) X-chromosome disease
E) Colour blindness

$$
\mathrm{v}) 12^{\text {th }}
$$

chromosome

1) A-i, B-iii, C-iv, D-ii, E-v
2) A-iii, B-v, C-i, D-ii, E-iv
3) A-ii, B-iii, C-iv, D-v, E-i
4) A-ii, B-I, C-iii, D-v, E-iv
179. Statement (S): Class Pelecypoda of phylum Mollusca is also called as Lamellibranchiate.

Reason (\mathbf{R}): The respiratory organs of the members of pelecypoda are plate like gills. The correct answer is

1) Both (S) and R are true, and \circledR^{\circledR} is not a correct explanation to (S)
2) (S) is correct, but (R) is not correct
3) (S) is not correct, but (R) is correct
4) Both (S) and (R) are true, and (R) is correct explanation to (S)
180. Which one of the following symbols and its representation, used in human pedigree analysis is correct.
1) $\bigcirc=$ Unaffected male
2) $\square=$ Unaffected female
3) = Male affected
4)

 relatives

PHYSICS

$\mathbf{1 - 1 0}$	2	1	2	1	4	4	1	4	4	2
$\mathbf{1 1 - 2 0}$	3	2	3	2	2	2	1	3	2	1
$\mathbf{2 1 - 3 0}$	2	2	4	1	2	2	4	4	1	4
$\mathbf{3 1 - 4 0}$	4	2	4	2	2	1	3	1	2	3
$\mathbf{4 1 - 4 5}$	4	3	1	4	4					

CHEMISTRY

46-50							2	2	3	1
$\mathbf{5 1 - 6 0}$	2	4	2	1	2	3	1	1	3	1
$\mathbf{6 1 - 7 0}$	4	3	1	1	3	4	1	2	3	1
$\mathbf{7 1 - 8 0}$	1	3	1	2	3	4	2	1	1	1
$\mathbf{8 1 - 9 0}$	1	3	2	3	4	1	2	3	3	2

BOTANY

$\mathbf{9 1 - 1 0 0}$	2	3	3	4	2	4	2	2	4	1			
$\mathbf{1 0 1 - 1 1 0}$	4	3	2	4	3	2	4	4	4	3			
$\mathbf{1 1 1 - 1 2 0}$	3	2	2	3	1	1	2	3	1	4			
$\mathbf{1 2 1 - 1 3 0}$	4	4	2	2	3	2	1	2	2	1			
$\mathbf{1 3 1 - 1 3 5}$	2	3	4	2	1								

ZOOLOGY

$\mathbf{1 3 6}-\mathbf{1 4 0}$						1	3	2	4	2
$\mathbf{1 4 1 - 1 5 0}$	3	3	3	2	3	2	3	2	4	3
$\mathbf{1 5 1 - 1 6 0}$	2	4	1	2	4	4	1	2	4	4
$\mathbf{1 6 1 - 1 7 0}$	1	3	3	3	1	2	3	3	2	1
$\mathbf{1 7 1 - 1 8 0}$	3	3	1	4	3	4	4	2	4	4

HINTS AND SOLUTIONS
 PHYSICS

1. The stopping potential is more negative for higher frequency of incident radiation.
2. $\eta=1-\frac{T_{2}}{T_{1}}=\frac{T_{1}-T_{2}}{T_{1}}$

$$
\begin{gathered}
\eta^{1}=\frac{\left(T_{1}-100\right)-\left(T_{2}-100\right)}{T_{1}-100} \\
=\frac{T_{1}-T_{2}}{T_{1} 100}
\end{gathered}
$$

$$
\eta^{1}>\eta
$$

3.

In the given circuit, the Zener diode is used as a voltage regulating device.
Hence, the voltage across
$1 \mathrm{~K}^{\prime}$ Omega is 5 V .
Current flowing through $1 \mathrm{~K} \Omega$ resistor is,

$$
I=\frac{5 V}{1 \times 10^{3} \Omega}=5 \times 10^{-3} A=5 \mathrm{~mA}
$$

4. $R_{1}=\frac{\pi}{4} \times \frac{15}{2 \pi}=\frac{15}{8} \Omega$
$R_{2}=\frac{7 \pi}{4} \times \frac{15}{2 \pi}=\frac{105}{8} \Omega$
$R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{\frac{15}{8} \times \frac{105}{8}}{15}=\frac{105}{64}$

$$
=1.64 \Omega
$$

5. ${ }_{Z}^{A} X \xrightarrow{\beta} \underset{(Z+1)}{A} Y \xrightarrow{\alpha}{ }_{Z-1}^{A-1} B \xrightarrow{\gamma}{ }_{Z-1}^{A-1} B$,

First X decays by β-emission emitting \bar{v}, anti-neutrino
simultaneously. Y emits α resulting in the excited level of B which in turn emits a
γ-ray
$\therefore \beta, \alpha, \gamma$ is the answer
6. Dimensions of $\varepsilon_{0} L=$ Dimension of capacitance (C)
$\varepsilon_{0} I \cdot \frac{\Delta V}{\Delta t}=\frac{C \Delta V}{\Delta t}=\frac{\Delta Q}{\Delta t}=\frac{\text { charge }}{\text { time }}$

$$
=\text { current }
$$

7. Path difference at P is,
$\Delta x=2\left(\frac{x}{2} \cos \theta\right)=x \cos \theta$
For intensity to be maximum,
$\Delta x=n \lambda$
$\therefore \mathrm{x} \cos \theta=\mathrm{n} \lambda$
$\cos \theta=\frac{n \lambda}{x}$
$\cos \theta \ngtr 1$
$\frac{n \lambda}{x} \ngtr 1$
$\therefore n \gg \frac{x}{\lambda}$
Putiing $\mathrm{x}=5 \lambda$
$\mathrm{n}>5$ or $\mathrm{n}=1,2,3,4,5$
Therefore, in all four quadrants there can be 20 maximas. There are more maximas
at $\theta=0^{\circ}$ and $\theta=180^{\circ}$
But $\mathrm{n}=5$ corresponds to $\theta=90^{\circ}$ and
$\theta=270^{\circ}$ which are coming only twice while we have multiplied it four times.

Therefore, total number of maximas are still 20, i.e.,
$\mathrm{n}=1$ to 4 in four quadrants (total 16) plus four more at $\theta=0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°
8. $\frac{1}{f_{e}}=\frac{1}{v_{e}}-\frac{1}{u_{e}}$
$\frac{1}{f_{e}}=\frac{1}{-D}-\frac{1}{u_{e}}$
$\frac{-1}{u_{e}}=\frac{1}{f_{e}}+\frac{1}{D} \Rightarrow \frac{-1}{u_{e}}=\frac{D+f_{e}}{D f_{e}}$
$\Rightarrow-u_{e}=\frac{D f_{e}}{D+f_{e}}$
$=f_{0}+\left|u_{e}\right|=f_{0}+\frac{D f_{e}}{D+f_{e}}$
$50+\frac{25 \times 5}{30}=\frac{325}{6} \mathrm{~cm}$
9. Angular magnification
$|m|=\frac{f_{0}}{f_{e}}$ or $5=\frac{f_{0}}{f_{e}}$ or $f_{0}=5 f_{e}$
Distance between the objective and the eye-piece is $\left(f_{0}+f_{e}\right)$
$\therefore\left(f_{0}+f_{e}\right)=36$
or $5 f_{e}+f_{e}=36$
or $f_{0}=6 \mathrm{~cm}$
$\therefore f_{0}=5 \times 6 \mathrm{~cm}=30 \mathrm{~cm}$
10. $d \sin \theta=(2 n-1) \frac{\lambda}{2}$
for first dark fringe

$$
\begin{aligned}
& d \sin \theta=\frac{\lambda}{2} \Rightarrow \sin \theta=\frac{\lambda}{2 d} \\
& \therefore \sin \theta=\frac{5460 \times 10^{-10}}{2 \times 10^{-4}} \\
& =2730 \times 10^{-6} \mathrm{rad}
\end{aligned}
$$

θ is so small $\therefore \sin \theta=\theta$

$$
\therefore \theta=2730 \times 10^{-6} \mathrm{rad}
$$

$$
=2730 \times 10^{-6} \times \frac{180}{\pi} \approx 0.16
$$

11. $\frac{1}{v}-\frac{1}{u}-\frac{1}{f}$

or $\frac{1}{v}-\frac{1}{-30}=\frac{1}{20}$
$\therefore \quad v=-60$
Coincidence is possible when the image is formed at the centre of curvature of the mirror. Only then the rays refracted through the lens will fall normally on the convex mirror and retrace their path to form the image at O . So, the distance between lens and mirror
$=60-10=50 \mathrm{~cm}$
12. $P=\frac{a^{3} b^{2}}{c d}$
$\Rightarrow \frac{\Delta P}{P} \times 100=3\left(\frac{\Delta a}{a} \times 100\right)+$
$2\left(\frac{\Delta b}{b} \times 100\right)\left(\frac{\Delta c}{c} \times 100\right)\left(\frac{\Delta d}{d} \times 100\right)$
$=3 \times 1+2 \times 2+3+4$
$=3+4+3+4=14 \%$
13. When L is removed from the circuit, it becomes
$\tan \phi=\tan \frac{\pi}{3}=\frac{X_{c}}{R}$
or $X_{c}=R \tan \frac{\pi}{3}=\sqrt{3} R$
When C is removed from the circuit, it becomes RL circuit.
$\therefore \tan \phi=\tan \frac{\pi}{3}-\frac{X_{L}}{R}$
or $x_{L}=R \tan \frac{\pi}{3}=\sqrt{3} R$
Impedance of the circuit,
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=R$
Power factor,
$\cos \phi=\frac{R}{Z}=\frac{R}{R}=1$
14. Distance travelled by the particle is $x=$ $40+12 t-t^{-3}$. We know that velocity is rate of change of distance.
i.e., $\quad v=\frac{d x}{d t}$
15. In the absence of aluminium
$B_{0}=\mu_{0} H$
In the presence of aluminium
$B=\mu H=\mu_{0}(1+x) H$
Percentage increase in B
$=\frac{B-B_{0}}{B_{0}} \times 100=\frac{\mu_{0} x H}{\mu_{0} H} \times 100$
$x \times 100=2.1 \times 10^{-5} \times 100$
$=2.1 \times 10^{-3}$
16. $\bar{S}=12 \hat{\imath}+5 \hat{\jmath}+9 \hat{k}$
$S=\sqrt{12^{2}+5^{2}+9^{2}}=5 \sqrt{10} \mathrm{~m}$
17. The magnetic field (acting parallel to the velocity) would not affect the motion. So the proton will move along the electric field. The trajectory of the particle is a straight line.
18. Distance travelled by the particle is $x=$ $40+12 t-t^{3}$. We know that velocity is rate of change of distance
i.e. $v=\frac{d x}{d t}$
$\therefore v=\frac{d}{d t}\left(40+12 t-t^{3}\right)$

$$
=0+12-3 t^{2}
$$

But final velocity $v=0$
$12=3 t^{2}=0$ pr $t^{2}=\frac{12}{3}=4 \mathrm{pr} t$

$$
\mathrm{TM} \quad=2 s
$$

Hence distance travelled by the particle before coming to rest is given by
$x=40+12(2)-(2)^{3}=56 m$
19. $B e v=\frac{m v^{2}}{r}$ or $r-\frac{m v}{B e}$

As, $m v=\sqrt{2 m K}$
so, $r=\frac{\sqrt{2 m K}}{B e}$
As the electron has been accelerated from rest through a potential difference of V volt, then $\mathrm{K}=\mathrm{eV}$
$r=\frac{\sqrt{2 m V e}}{B^{2} e^{2}}=\sqrt{\frac{2 m V}{B^{2} e}}$
20. $h_{1}+h_{2}=\frac{u^{2}}{2 g}$
$h_{2}=h_{1}+50$
21. $B_{1}=\frac{\mu_{0}}{4 \pi} \times \frac{2 \pi I}{R}=\frac{\mu_{0}}{4 \pi} \times \frac{2 \pi I \times 2 \pi}{L} \ldots$ (i)
$\therefore L=2 \pi R$, for circular loop)
$B_{2}=\frac{\mu_{0}}{4 \pi} \times \frac{1}{\left(\frac{a}{2}\right)}\left[\sin 45^{\circ}+\sin 45^{\circ}\right] \times 4$
where $a=\left(\frac{L}{4}\right)$
$\therefore B_{2}=\frac{\mu I}{4 \pi L} \times 8 \times 4 \times\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]$
$=\frac{\mu_{0} I}{4 \pi L} \times \frac{64}{\sqrt{2}}$
$\therefore \frac{B_{1}}{B_{2}}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{4 \pi^{2} I}{L} / \frac{\mu_{0}}{4 \pi L} \times \frac{64 I}{\sqrt{2}}$
or $\quad \frac{B_{1}}{B_{2}}=\frac{\pi^{2}}{8 \sqrt{2}}$
22. $F=V \frac{d m}{d t}=V M$
23. $P=V I=\frac{V^{2}}{R}$
$I=\frac{P}{V}=\frac{30 \mathrm{~W}}{15 \mathrm{~V}}=2 \mathrm{amp}$
$R=\frac{V^{2}}{P}=\frac{(15 \mathrm{~V})^{2}}{30 W}=7.5 \Omega$

The current I through an external resistance R when m cells each of emf E and internal resistance r are connected in series, is :
$(\therefore V I=W)$

$$
I=\frac{m E}{R+m r}
$$

Putting $E=2 V, r=0.5 \Omega$
$R=7.5 \Omega$
and $\mathrm{I}=2 \mathrm{amp}$, in eqn.(i), we get:
$2=\frac{2 m}{7.5+0.5 m}$ or $m=15$
24. Forces acting on balloon are its weight and buoyant force (B). The buoyant force will be constant as there is no charge in volume of the balloon. When ballon is descending down
$m g-B=m a$
When balloon is moving up

Balloon is moving down balloon is moving up Equation (1) + equation(2)
$\Rightarrow m g-m g+m_{0 g}=m a+m a-m_{0} a$
$\Rightarrow m_{0}=\frac{2 m a}{g+a}$
25. Let R be the resistance of each lamp. If E be the applied emf, then the current in the circuit I_{1} is given by:
$I_{1}=\frac{\operatorname{TIN} E}{R+\left(\frac{R}{2}\right)}=\left(\frac{2 E}{3 R}\right)$
Current flowing through L_{2} or L_{3}
$=\frac{1}{2}\left[\frac{2 E}{3 R}\right]=\frac{E}{3 R}$
When L_{3} is fused, the whole current flows through L_{1} and L_{2}.

Thus, $L_{2}=(E / 2 R)$
So, current through L_{1} decreases and through L_{2} increases.
26. $W=\int_{t i}^{i f} P d t$
27. Since, due to wrong connection of each cell, the total emf is reduced by 2 E , then for wrong connection of three cells, the total emf will reduce to ($n E-6 E$) whereas the total or equivalent resistance of cell combination will be nr .
28. $\frac{1}{2 m u^{2}}=\frac{1}{2} m v^{2}+m g L$
$v=\sqrt{u^{2}-2 g L}$
$\overrightarrow{\Delta v}=\vec{v}-\vec{u}$
$|\overrightarrow{\Delta v}|=|\vec{v}-\vec{u}|$
$\Delta v=\sqrt{v^{2}+u^{2}}$
$\Delta v=\sqrt{u^{2}-2 g L+u^{2}}$
$\Delta v=\sqrt{2\left(u^{2}-g L\right)}$
29.

Applying kirchhoff's first law at junction E, we get
$i_{3}=i_{1}+i_{2}$
Applying Kirchhoff's second law for the closed loop ABEFA, we get:
$-{ }_{1} R_{1}+\Delta V_{B_{2}}+i_{2} R_{2}-i_{1} R_{1}-\Delta V_{B_{1}}=0$
$-2 i_{1} R_{1}+i_{2} R_{2}+\Delta V_{B}-\Delta V_{B}=0$
$-2 i_{1}(2)+i_{2}(4)+6-3=0$
$-4 i_{1}+4 i_{2}+3=0$
$-4 i_{1}+4 i_{2}=-3$
Again, applying Kirchhoff's second for the closed loop BCDEB, we get:
$-i_{3} R_{1}+\Delta V_{B_{2}}-i_{3} R_{1}-i_{2} R_{2}-\Delta V_{B_{2}}=0$
$-2 i_{3} R_{1}-i_{2} R_{2}=0$
$-2 i_{3}(2)-i_{2}(4)=0$
$-4 i_{3}+4 i_{2}=0 \Rightarrow i_{3}+i_{2}=0$
Solving equns. (i), (ii) and (iii), we get:
$i_{1}=0.50 A, \quad i_{2}=-0.25 A$,

$$
i_{3}=0.25 A
$$

30. $p=\left(\frac{m}{t}\right) V^{3}=100(2)^{3}=800 \mathrm{~W}$
31. When the two condensers are connected in series,
$C=\frac{2 \times 1}{2+1}=\frac{2}{3} \mu F$ and $Q=\frac{2 E}{3}$
The potential of condenser C_{1} is given by:
$V_{1}=\frac{Q}{C_{1}}=\frac{2 E}{3}<6 \mathrm{KV}$
$\therefore E<5 \times \frac{3}{2} 9 K V$
$E<7.5<9 K V$; With stand
voltage $=9 \mathrm{KV}$
32. $\Delta K=\frac{m_{1} m_{2}}{2\left(m_{1}+m_{2}\right)}\left(U_{1}-U_{2}\right)^{2}$
$\Delta K=\frac{1}{4} m\left(U_{1}-U_{2}\right)^{2}$
33. The given combination is equivalent to two capacitors connected in parallel.
So, the total capacitance $=\frac{2 \varepsilon_{0} A}{d}$
\therefore Energy stored $=\frac{1}{2}\left(\frac{2 \varepsilon_{0} A}{d}\right) V^{2}$

$$
=\frac{\varepsilon_{0} A V^{2}}{d}
$$

$=\frac{8.85 \times 10^{-12} \times 50 \times 10^{-4} \times 100}{3 \times 10^{-3}}$

$$
=14.75 \times 10^{10} \mathrm{~J}
$$

34. $\bar{r}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{m_{1}+m_{2}}$
$\vec{r}=\frac{1(\hat{\imath}+2 \hat{\jmath}+\hat{k})+3(-3 \hat{\imath}-2 \hat{\jmath}+\hat{k})}{1+3}$
$\vec{r}=-2 \vec{\imath}-\vec{\jmath}+\vec{K}$
35. Let L be the side of the square and the length of the diagonal of the square be $\sqrt{2} L$.

Potential at the point of intersection of diagonals is :
$V=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{(2-3-4+5)}{\left(\frac{\sqrt{2} L}{2}\right)}=0$
and electric field intensity at this point is $E=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{2}{\frac{L^{2}}{2}} \hat{\imath}-\frac{3}{\frac{L^{2}}{2}} \hat{\jmath}-\frac{4}{\frac{L^{2}}{2}} \hat{\imath}+\frac{5}{\frac{L^{2}}{2}} \hat{}\right] \neq 0$
36. $\tau=I \propto$
$M g \frac{L}{2}=\frac{M L^{2}}{3} \alpha$
$\alpha=\frac{3 g}{2 L}$
37.

Fundamental harmonic of pen organ pipe is given by:
$l=\frac{\lambda_{1}}{2} \quad$ or $\lambda_{1}=2 l$
$v_{1}=\frac{v}{\lambda_{1}}=\frac{v}{2 l}$
As the tube vibrates in the second harmonic hence,
$f_{1}=2 v_{1}=\frac{2 v}{2 l}=\frac{v}{l}$
If one end is closed, it gives only odd harmonics. Fundamental frequency of closed organ pipe $=\frac{v}{4 l}$

The other harmonics are $\frac{3 v}{4 l}, \frac{5 v}{4 l}$, etc.
Once, the frequency starts increasing the first higher harmonic that resonated $=\frac{3 v}{4 l}$

If $n=3, f_{2}=\frac{3}{4} \frac{v}{l}=\frac{3}{4} f_{1}$
However, here is a snag. The frequency is increased from v/l. Here, $\frac{3}{4} f_{1}$ is not greater than $f_{1}\left(=\frac{v}{l}\right)$. Hence, $\frac{5}{4} f_{1}$ is the answer because this is greater than f_{1}. So, answer is (C).
$n=5, f_{2}=5 \square \times \frac{v}{4 l}=\frac{5}{4} f_{1}$
38. $T^{1}=T \sqrt{\frac{\rho_{B}}{\rho_{B}-\rho_{L}}}=T \sqrt{\frac{\rho_{B}}{\rho_{B}-\rho_{L}}}=$
$T \sqrt{\frac{\rho_{B}}{\rho_{B}-\frac{\rho_{B}}{8}}}=T \sqrt{\frac{8}{7}}$
39. $U(x)=A[1-\cos p x]$
$F=-\frac{d U}{d x}=-A p \sin p x$
For small oscillation, $\sin p x=p x$
$\therefore F=-A p^{2} x$
and $a=\frac{F}{m}=-\left(\frac{A p^{2}}{m}\right) x=-\omega^{2} x$
$\omega=\sqrt{\frac{A p^{2}}{m}}$ or $T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{A p^{2}}}$
40. $\Delta V=v \gamma \Delta T, K=\frac{-P}{\frac{\Delta V}{V}}$
$\Rightarrow \frac{\Delta V}{V}-\frac{P}{k}$
$3 \alpha \Delta T=\frac{p}{k}$
$\Delta T=\frac{p}{3 k \alpha}$
41. $x=4(\cos \pi t+\sin \pi t)$
$=4 \sqrt{2}\left[\frac{1}{\sqrt{2}} \cos \pi t+\frac{1}{\sqrt{2}} \sin \pi t\right]$
$=4 \sqrt{2}\left[\sin \frac{\pi}{4} \cos \pi t+\cos \frac{\pi}{4} \sin \pi t\right]$
$=4 \sqrt{2} \sin \left(\pi t+\frac{\pi}{4}\right)$
Standard equation of displacement is,
$x=\operatorname{asin}(\omega+\phi)$
Comparing the given equation with standard equation.
$a=4 \sqrt{2}$
42. $h r=$ constant t
43. The mean free path is given by
$l=\frac{1}{\sqrt{2} \pi d^{2} n}$
where, $\mathrm{d}=$ Diameter of the molecule
$\mathrm{n}=$ Number of molecules /volume
Here, mean free path $l \propto 1 / d^{2}$
where $\mathrm{d}=$ diameter of the molecule
Given that $d_{1}=\stackrel{o}{A}, d_{2}=2 \stackrel{o}{A}$
$\therefore \frac{l_{1}}{l_{2}}=\left(\frac{d_{2}}{d_{2}}\right)^{2}=\left(\frac{2}{1}\right)^{2}=\frac{4}{1}$
44. $V_{r m s}=\sqrt{\frac{V_{1}^{2}+V_{2}^{2}+V_{3}^{2}+V_{4}^{2}}{4}}$
$=\sqrt{\frac{1^{2}+4^{2}+8^{2}+16^{2}}{4}}=9.2 \mathrm{~m} / \mathrm{s}$
45. $\eta=1-\frac{T_{2}}{T_{1}} \frac{40}{100}=1-\frac{T_{2}}{T_{1}}$
$T_{2}=\frac{3 T}{5} \quad \frac{50}{100}=1-\frac{T_{2}}{T^{\prime}} \quad T^{\prime}=\frac{6 T}{5}$

CHEMISTRY

46. $\mathrm{NaOH}+\mathrm{SO}_{2} \rightarrow$

$$
\mathrm{Na}_{2} \mathrm{SO}_{3(a q)} \xrightarrow{+\mathrm{SO}_{2}} \mathrm{NaHSO}_{3(a q)}
$$

47. Due to +M effect $\mathrm{c}-\mathrm{cl}$ bond aquires partial double bond character
48. In $\mathrm{H}_{2} \mathrm{SO}_{4}$; the $\mathrm{O}-\mathrm{H}$ bond has highest polarity; so form stronger H -bond.
49. $1120 \mathrm{ml}=34 \mathrm{gms}$
$\therefore 1000 \mathrm{ml}=30.35 \mathrm{gms}$
3.035 gms in 100 ml
or
$30.35 \mathrm{gms}=100 \mathrm{vol} \mathrm{H}_{2} \mathrm{O}_{2}$
$\therefore 3.3035=10 \mathrm{vol} \mathrm{H}_{2} \mathrm{O}_{2}$
50.

51. $\mathrm{A} \& \mathrm{C}$ are $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{MgCl}$
52. Javelle water is $\mathrm{NaOCl}_{(a q)}$ (or $\mathrm{KOCl}_{(a q)}$ which acts as a bleaching agent to bleach gold ornaments.
53. Bond length decreases with increasing of Bond order.
54. $L n_{2} C_{3}$ (or) $L n C$ are non- stoichiometric \& Interstitial compounds that liberates H_{2} with water.
55. 3 - Hexenal is not the $\alpha \beta$-unsaturated aldehyde
56. $\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$at cathode
$\mathrm{Na}{ }^{+}+\mathrm{Hg}+\mathrm{e}^{-} \rightarrow \mathrm{Na}-\mathrm{Hg}$
57. $\% B r=\frac{80 \times 0.188 \times 100}{188 \times 0.4}=20 \%$
58. By the addition of FeCl_{3}, the equilibrium shifts to right side so intensity of red colour increases.
59. $X \rightarrow$ Benzene diazonium chloride
$Y \rightarrow$ Benzene
$Z \rightarrow$ Benzaldehyde
60. $3 \mathrm{SO}_{2}+\mathrm{O}_{3} \rightarrow 3 \mathrm{SO}_{3}$ where total ozone is utilized
61. Absence of d-orbitals in carbon of CCl_{4}
62. BiH_{3} is thermally unstable and acts as a strong reducing agent
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow\left(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right)^{2-} \rightarrow$ blue colour M
63. $\mathrm{X} \rightarrow 1,4$ - dimethyl benzene
64. $\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2} \mathrm{H}_{4(g)} \Delta \mathrm{H}^{-}+$ $106 \mathrm{KJ} / \mathrm{mol}$
$\therefore+945+2(436)-4\left(\frac{1170}{3}\right)-x=$ $+106$
$\Rightarrow x=151 \mathrm{~kJ} / \mathrm{mole}$
65. $3^{\text {rd }}$ one does not follows Huckle rule
66. $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-$ $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ is a symmetrical alkyne which gives the same product on addition of $\mathrm{H}_{2} \mathrm{O}$ is / presence of Hg^{2+} for nay triple bonded carbon atom.
67. Alkali metal
68. Conceptual
69. $\underset{\substack{8 \text { mols } \\ \text { 4mols }}}{2 A B_{3}} \rightleftharpoons \underset{\substack{2 \text { mols } \\ 2 \text { mols }}}{A_{2}}+\underset{\substack{6 \text { mols } \\ 6 \text { mols }}}{3 B_{2}}$ 4mols
$K_{c}=\frac{2 \times(6)^{3}}{(4)^{2}}=27$
70. Limiting molar conductivity values for $\mathrm{H}^{+}, \mathrm{Na}^{+}, \mathrm{OH}^{-}, \mathrm{Cl}^{-}$and $\mathrm{CH}_{3} \mathrm{COO}^{-}$are respectively ($\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$) 349.6, 50.1, 199.1, 76.3 and 40.9
71. D-glucose and D-galactose
72. Conceptual
73. $5 \overline{\mathrm{I}}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
74. For the spontaneous cell reaction
$E_{\text {cell }}^{0}$ is +Ve
$\therefore C d^{2} / C d$ acts an anode and
$\mathrm{Hg}_{2} \mathrm{SO}_{4} / 2 \mathrm{Hg}$ acts as cathode and $E^{0}=+0.62-0.40=+1.02 \mathrm{~V}$
75. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is cationic complex
76. LiH is less reactive
77. Reactivity of diborane decreases in the presence of paraffin (Grease)
78.

79. Antagonist
80. Given mixture is a basic buffer
$\therefore p^{O H}=p^{K b}+\log \frac{[\text { salt }]}{[\text { base }]}$
$\therefore p^{O H}=4.75+0=4.75$
81. $M=d \times V=3.12 \times=4.68$ or 4.7 gr
82. $\mathrm{XeO}_{3}, \mathrm{XeO}_{4}$ have sp^{3} hybridisation with 4 hybrid orbitals XeF_{2} is $\mathrm{sp}^{3} \mathrm{~d}$ have 5
hybrid and $X e F_{4} s p^{3} d^{2}$ have six hybrid orbitals.
83. $\mathrm{FeO}+\mathrm{SiO}_{2}=\mathrm{FeSiO}_{3}(\mathrm{Slag})$
84. Ionic radii of $F e^{3+}=0.56 A^{0} \& O^{-2}=$ $1.4 A^{0}$
radious of octahedral void $=1.4 \times 0.414 \simeq$ $0.58 \mathrm{~A}^{\circ}$
which is equal to Fe^{3+} ions, so Fe^{3+} ions present in octahedral voids by $2 / 3$ portion to give $\mathrm{Fe}_{2} \mathrm{O}_{3}$ crystal.
85. $\frac{a n^{2}}{v^{2}}$
86.

87. Protecting power $\propto \frac{1}{\text { gold number }}$
88. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}$ has longer carbon chain. So it gives micelles readily.
89. $\rho=\frac{z \times m}{N_{A} \times a^{3}}$
$\therefore M=\frac{2.72 \times 6 \times 10^{23} \times\left(4.04 \times 10^{-8}\right)^{3}}{4}=$ 27 gms
90. $\mathrm{Ag}_{2} \mathrm{~S} \xrightarrow{\mathrm{NaCl} / \Delta} \mathrm{AgCl} \xrightarrow{\mathrm{NaCl}_{(a q)}} \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$

$$
\xrightarrow{\mathrm{Zn}} N a_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+A g .
$$

Here Zn acts a reducing agent.

