QUANTITATIVE APTITUDE LCM and HCF EBook

Stay Connected With SPNotifier

EBooks for Bank Exams，SSC \＆Railways 2020

General Awareness EBooks

Computer Awareness EBooks

Monthly Current Affairs Capsules

1. The LCM of two numbers is 864 and their HCF is 144. If one of the numbers is 288, the other number is:
A. 576
B. 1296
C. 432
D. 144
2. LCM of two numbers is $\mathbf{2 2 5}$ and their HCF is 5. If one number is 25 , the other number will be:
A. 5
B. 25
C. 45
D. 225
3. The L.C.M. of two numbers is 1820 and their H.C.F. is 26. If one number is 130 then the other number is:
A. 70
B. 1690
C. 364
D. 1264
4. The LCM of two numbers is 1920 and their HCF is 16. If one of the numbers is 128 , find the other number.
A. 204
B. 240
C. 260
D. 320
5. The HCF of two numbers 12906 and 14818 is 478. Their LCM is
A. 400086
B. 200043
C. 600129
D. 800172
6. The H.C.F. and L.C.M. of two 2- digit numbers are 16 and 480 respectively. The numbers are:
A. 40,48
B. 60,72
C. 64,80
D. 80,96
7. The HCF of two numbers is $\mathbf{1 6}$ and their LCM is 160 . If one of the number is 32 , then the other number is
A. 48
B. 80
C. 96
D. 112
8. The product of two numbers is 4107. If the H.C.F. of the numbers is 37 , the greater number is
A. 185
B. 111
C. 107
D. 101
9. The HCF of two numbers is $\mathbf{1 5}$ and their LCM is $\mathbf{3 0 0}$. If one of the number is $\mathbf{6 0}$, the other is:
A. 50
B. 75
C. 65
D. 100
10. The HCF and LCM of two numbers are 12 and 924 respectively. Then the number of such pairs is
A. 0
B. 1
C. 2
D. 3
11. The LCM of two numbers is 30 and their HCF is 5 . One of the number is 10 . The other is
A. 20
B. 25
C. 15
D. 5
12. The product of two numbers is $\mathbf{1 2 8 0}$ and their H.C.F. is 8. The L.C.M. of the number will be:
A. 160
B. 150
C. 120
D. 140
13. The H.C.F. and L.C.M. of two numbers are 8 and 48 respectively. If one of the number is 24 , then the other number is
A. 48
B. 36
C. 24
D. 16
14. The H.C.F and L.C.M of two numbers are 12 and 336 respectively. If one of the number is 84 , the other is
A. 36
B. 48
C. 72
D. 96
15. The product of two numbers is 216. If the HCF is 6 , then their LCM is
A. 72
B. 60
C. 48
D. 36
16. The HCF and LCM of two numbers are 18 and 378 respectively. If one of the number is 54 , then the other number is
A. 126
B. 144
C. 198
D. 238
17. The HCF and product of two numbers are 15 and 6300 respectively. The number of possible pairs of the numbers is
A. 4
B. 3
C. 2
D. 1
18. The HCF of two numbers is 15 and their LCM is $\mathbf{2 2 5}$. If one of the number is 75 , then the other number is:
A. 105
B. 90
C. 60
D. 45
19. The LCM of two numbers is 520 and their HCF is 4. If one of the number is 52 , then the other number is
A. 40
B. 42
C. 50
D. 52
20. The H.C.F. of two numbers is 96 and their L.C.M. is 1296 . If one of the number is 864 , the other is
A. 132
B. 135
C. 140
D. 144
21. The LCM of two numbers is 4 times their HCF. The sum of LCM and HCF is $\mathbf{1 2 5}$. If one of the number is 100 , then the other number is
A. 5
B. 25
C. 100
D. 125
22. Product of two co-prime numbers is 117. Then their L.C.M. is
A. 117
B. 9
C. 13
D. 39
23. The product of two numbers is 2160 and their HCF is 12 . Number of such possible pairs is
A. 1
B. 2
C. 3
D. 4
24. LCM of two numbers is 2079 and their HCF is 27. If one of the number is 189, the other number is
A. 297
B. 584
C. 189
D. 216
25. The product of two numbers is 2028 and their HCF is 13. The number of such pairs is
A. 1
B. 2
C. 3
D. 4
26. The HCF and LCM of two numbers are 13 and 455 respectively. If one of the number lies between 75 and 125, then, that number is:
A. 78
B. 91
C. 104
D. 117
27. The H.C.F. of two numbers is 8 . Which one of the following can never be their L.C.M.?
A. 24
B. 48
C. 56
D. 60
28. The HCF of two numbers is 23 and the other two factors of their LCM are 13 and 14. The larger of the two numbers is:
A. 276
B. 299
C. 345
D. 322
29. The L.C.M. of three different numbers is 120. Which of the following cannot be their H.C.F.?
A. 8
B. 12
C. 24
D. 35
30. The H.C.F. and L.C.M. of two numbers are 44 and 264 respectively. If the first number is divided by 2 , the quotient is 44 .
A. 147
B. 528
C. 132
D. 264
31. The least number which when divided by 4, $6,8,12$ and 16 leaves a remainder of 2 in each case is:
A. 46
B. 48
C. 50
D. 56
32. The least number, which when divided by $12,15,20$ or 54 leaves a remainder of 4 in each case, is:
A. 450
B. 454
C. 540
D. 544
33. Find the greatest number of five digits which when divided by $3,5,8,12$ have 2 as remainder
A. 99999
B. 99958
C. 99960
D. 99962
34. The least multiple of 13 , which on dividing by 4, 5, 6, 7 and 8 leaves remainder 2 in each case is:
A. 2520
B. 842
C. 2522
D. 840
35. A, B, C start running at the same time and at the same point in the same direction in a circular stadium. A completes a round in 252 seconds, B in 308 seconds and C in 198 seconds. After what time will they meet again at the starting point?
A. 26 minutes 18 seconds
B. 42 minutes 36 seconds
C. 45 minutes
D. 46 minutes 12 seconds
36. Find the largest number of four digits such that on dividing by 15, 18, 21 and 24 the remainders are 11, 14, 17 and 20 respectively.
A. 6557
B. 7556
C. 5675
D. 7664
37. The least perfect square, which is divisible by each of 21,36 and 66 is
A. 214344
B. 214434
C. 213444
D. 231444
38. The least number, which when divided by 4, 5 and 6 leaves remainder 1, 2 and 3 respectively, is
A. 57
B. 59
C. 61
D. 63
39. Let the least number of six digits which when divided by $4,6,10,15$ leaves in each case same remainder 2 be N. The sum of digits in N is:
A. 3
B. 5
C. 4
D. 6
40. Which is the least number which when doubled will be exactly divisible by 12, 18, 21 and 30 ?
A. 2520
B. 1260
C. 630
D. 196
41. The smallest square number divisible by 10 , 16 and 24 is
A. 900
B. 1600
C. 2500
D. 3600
42. If the students of a class can be grouped exactly into 6 or 8 or 10, then the minimum number of students in the class must be
A. 60
B. 120
C. 180
D. 240
43. The least number which when divided by 4, 6, 8 and 9 leave zero remainder in each case and when divided by 13 leaves a remainder of 7 is:
A. 144
B. 72
C. 36
D. 85
44. The smallest number, which when divided by 12 and 16 leaves remainder 5 and 9 respectively, is:
A. 55
B. 41
C. 39
D. 29
45. A number which when divided by 10 leaves a remainder of 9 , when divided by 9 leaves a remainder of 8 , and when divided by 8 leaves a remainder of 7 , is :
A. 1539
B. 539
C. 359
D. 1359
46. What is the smallest number which leaves remainder 3 when divided by any of the numbers 5, 6 or 8 but leaves no remainder when it is divided by 9 ?
A. 123
B. 603
C. 723
D. 243
47. The least number which when divided by 16, 18, 20 and 25 leaves 4 as remainder in each case but when divided by 7 leaves no remainder is
A. 17004
B. 18000
C. 18002
D. 18004
48. What is the least number which when divided by the numbers 3, 5, 6, 8, 10 and 12 leaves in each case a remainder 2 but when divided by 13 leaves no remainder?
A. 312
B. 962
C. 1562
D. 1586
49. The least multiple of 7 , which leaves the remainder 4 , when divided by any of $6,9,15$ and 18 , is
A. 76
B. 94
C. 184
D. 364
50. The largest number of five digits which, when divided by $16,24,30$, or 36 leaves the same remainder 10 in each case, is:
A. 99279
B. 99370
C. 99269
D. 99350

Answers and Explanation

1. Answer: C

Explanation: Required number
$=\frac{\text { LCM } \times \mathrm{HCF}}{\text { First number }}$
$=\frac{864 \times 144}{288}=432$
2. Answer: C

Explanation: LCM \times HCF $=1$ st Number $\times 2$ nd Number
$225 \times 5=25 \times x$
I.e. $x=\frac{225 \times 5}{25}=45$
3. Answer: C

Explanation: Given that
L.C.M. of two numbers $=1820$
H.C.F. of those numbers $=26$

One of the numbers is 130
I.e. Another number
$=\frac{1820 \times 26}{130}=364$
4. Answer: B

Explanation: Using Rule 1,

We have,

First number \times second number
$=\mathrm{LCM} \times \mathrm{HCF}$
I.e. Second number
$=\frac{1920 \times 16}{128}=240$
5. Answer: A

Explanation: Product of two numbers $=\mathrm{HCF} \times \mathrm{LCM}$
$=12906 \times 14818$
$=\mathrm{LCM} \times 478$
LCM $=\frac{12906 \times 14818}{478}=400086$
6. Answer: D

Explanation: H.C.F. of the two 2-digit numbers = 16

Hence, the numbers can be expressed as $16 x$ and $16 y$, where x and y are prime to each other.

Now,

First number \times second number
$=$ H.C.F. \times L.C.M.
$16 x \times 16 y=16 \times 480$
$x y=\frac{16 \times 480}{16 \times 16}=30$
The possible pairs of x and y, satisfying the condition $x y=30$ are:
$(3,10),(5,6),(1,30),(2,15)$
Since the numbers are of 2-digits each.

Hence, admissible pair is $(5,6)$
Numbers are: $16 \times 5=80$

And $16 \times 6=96$
7. Answer: B

Explanation: We know that,
First number \times Second number
$=\mathrm{LCM} \times \mathrm{HCF}$
i.e, Second number
$=\frac{16 \times 160}{32}=80$
8. Answer: B

Explanation: $\mathrm{LCM}=\frac{\text { Product of two numbers }}{\mathrm{HCF}}$
$=\frac{4107}{37}=111$
Obviously, numbers are 111 and 37 which satisfy the given condition.

Hence, the greater number $=111$
9. Answer: B

Explanation: First number \times Second number
$=\mathrm{HCF} \times \mathrm{LCM}$
i.e, Second number
$=\frac{15 * 300}{60}=75$
10. Answer: C

Explanation: Let the numbers be $12 x$ and $12 y$ where x and y are prime to each other.
i.e, $\mathrm{LCM}=12 x y$
i.e, $12 x y=924$
$x y=77$
i.e, Possible pairs $=(1,77)$ and $(7,11)$
11. Answer: C

Explanation: First number \times second number
$=\mathrm{LCM} \times \mathrm{HCF}$
Let the second number be x.
i.e, $10 x=30 \times 5$
$X=\frac{30 \times 5}{10}=15$
12. Answer: A

Explanation: HCF \times LCM $=$ Product of two numbers
$8 \times \mathrm{LCM}=1280$
$\mathrm{LCM}=\frac{1280}{8}=16$
13. Answer: D

Explanation: First number \times second number
$=\mathrm{HCF} \times \mathrm{LCM}$
$24 \times$ second number $=8 \times 48$
i.e, Second number $=\frac{8 * 48}{2}=16$
14. Answer: B

Explanation: First number \times second number
$=\mathrm{HCF} \times \mathrm{LCM}$
$=84 \times$ second number
$=12 \times 336$
i.e, Second number
$=\frac{12 * 336}{84}=48$
15. Answer: D

Explanation: Let the numbers be $6 x$ and $6 y$ where x and y are prime to each other.
i.e, $6 x \times 6 y=216$
$x y=\frac{216}{6 * 6}=6$
$L C M=6 x y=6 \times 6=36$
16. Answer: A

Explanation: Second number
$=\frac{\text { LCM } \times \mathrm{HCF}}{\text { First number }}$
$=\frac{18 \times 378}{54}=126$
17. Answer: C

Explanation: Let the number be $15 x$ and
$15 y$, where x and y are co -prime.
$15 x \times 15 y=6300$
$x y=\frac{6300}{15 * 15}=28$
18. Answer: D

Explanation: First number \times Second number
$=\mathrm{HCF} \times \mathrm{LCM}$
$=75 \times$ Second number
$=15 \times 225$

Second number
$=\frac{15 * 225}{75}=45$
19. Answer: A

Explanation: First number \times second number
$=\mathrm{HCF} \times \mathrm{LCM}$
$=52 \times$ second number
$=4 \times 520$
= Second number
$=\frac{4 * 520}{52}=40$
20. Answer: D

Explanation: First number \times Second number
$=\mathrm{HCF} \times \mathrm{LCM}$
P $864 \times$ Second number
$=96 \times 1296=$ Second number
$=\frac{96 * 1296}{864}=144$
21. Answer: B

Explanation: Let LCM be L and HCF be H , then
$L=4 H$
$H+4 H=125$
$5 H=125$
$H=\frac{125}{5}=25$
i.e., $L=4 \times 25=100$
i.e., Second number
$=\frac{\mathrm{L} * \mathrm{H}}{\text { First number }}$
$\mathrm{H}=\frac{100 * 25}{100}=25$
22. Answer: A

Explanation: HCF of two-prime numbers $=1$
i.e, Product of numbers = their

LCM = 117
$117=13 \times 9$ where $13 \& 9$ are co-prime.
L.C.M $(13,9)=117$
23. Answer: B

Explanation: $\mathrm{HCF}=12$
Numbers $=12 x$ and $12 y$
Where x and y are prime to each other.
$12 x \times 12 y=2160$
$x y=\frac{2160}{12 * 12}$
$=15=3 \times 5,1 \times 15$
Possible pairs $=(36,60)$ and $(12,180)$
htssons
24. Answer: A

Explanation: $=\frac{\mathrm{L} * \mathrm{H}}{\text { First number }}$
$H=\frac{27 * 2079}{189}=297$
25. Answer: B

Explanation: Here, HCF = 13
Let the numbers be $13 x$ and $13 y$
where x and y are Prime to each other.
Now, $13 x \times 13 y=2028$
$x y=\frac{2028}{13 * 13}=12$
The possible pairs are: $(1,12),(3,4),(2,6)$
But the 2 and 6 are not co-prime.
The required no. of pairs $=2$
26. Answer: B

Explanation: Let the numbers be $13 x$ and $13 y$.
Where x and y are co-prime.
LCM = $13 x y$
$13 x y=455$
$x y=\frac{455}{13}=35=5 * 7$
Numbers are $13 \times 5=65$ and $13 \times 7=91$
27. Answer: D

Explanation: HCF of two numbers is 8 .
This means 8 is a factor common to both the numbers. LCM is common multiple for the two numbers, it is divisible by the two numbers.

So, the required answer $=60$
28. Answer: D

Explanation: Let the numbers be $23 x$ and $23 y$ where x and y are co-prime.

LCM = $23 x y$

As given,
$23 x y=23 \times 13 \times 14$
$x=13, y=14$
The larger number $=23 y$
$=23 \times 14=322$
29. Answer: D

Explanation: $\mathrm{LCM}=2 \times 2 \times 2 \times 3 \times 5$
Hence, $\mathrm{HCF}=4,8,12$ or 24
According to question
35 cannot be H.C.F. of 120.
30. Answer: C

Explanation: First number $=2 \times 44=88$
First number \times Second number
$=$ H.C.F. \times L.C.M.
$=88 \times$ Second number
$=44 \times 264$
= Second number
$=\frac{44 * 264}{88}=132$
31. Answer: C

Explanation: Using Rule 4,
L.C.M. of $4,6,8,12$ and $16=48$

Therefore, required number
$=48+2=50$
32. Answer: D

Explanation: LCM of $15,12,20,54=540$
Then number $=540+4=544$
[4 being remainder]
33. Answer: D

Explanation: Using Rule 4,

The greatest number of five digits is 99999.
LCM of $3,5,8$ and 12

2	3,	5,	8,	12
2	3,	5,	4,	6
3	3,	5,	2,	3
	1,	5,	2,	1

LCM $=2 \times 2 \times 3 \times 5 \times 2=120$
After dividing 99999 by 120, we get 39 as remainder
$=99999-39=99960$
$=(833 \times 120)$
99960 is the greatest five digit number divisible by the given divisors.

In order to get 2 as remainder in each case we will simply add 2 to 99960.

Therefore, greatest number
$=99960+2=99962$
34. Answer: C

Explanation: The greatest number of five digits is 99999.

LCM of $3,5,8$ and 12

$=$| 2 | 4, | 5, | 6, | 7, | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2, | 5, | 3, | 7, | 4 |
| | 1, | 5, | 3, | 7, | 2 |

LCM $=2 \times 2 \times 3 \times 5 \times 2=120$

After dividing 99999 by 120 , we get 39 as remainder
$99999-39=99960=(833 \times 120)$

99960 is the greatest five digit number divisible by the given divisors.

In order to get 2 as remainder in each case we will simply add 2 to 99960.
i.e., Greatest number $=99960+2=99962$
35. Answer: D
36. Answer: B
37. Answer: C

Explanation: LCM of 21,36 and 66
i.e, $\mathrm{LCM}=3 \times 2 \times 7 \times 6 \times 11$
$=3 \times 3 \times 2 \times 2 \times 7 \times 11$

Therefore, required number
$=3^{2} \times 2^{2} \times 7^{2} \times 11^{2}$
$=213444$
38. Answer: A

Explanation: Here 4-1 = 3,5-2
$=3,6-3=3$
I.e, The required number
$=\operatorname{LCM}$ of $(4,5,6)-3$
$=60-3=57$
39. Answer: B

Explanation: LCM of 4, 6, 10, $15=60$
Least number of 6 digits $=100000$

The least number of 6 digits which is exactly divisible by $60=100000+(60-40)=100020$
I.e., Required number (N)
$=100020+2=100022$

Hence, the sum of digits $=1+0+0+0+2+2=$ 5
40. Answer: C

Explanation:

The LCM of 12, 18, 21, 30

2	$12,18,21,30$
3	$6, \quad 9,21,15$
	$2,3,7,5$

i.e., $L C M=2 \times 3 \times 2 \times 3 \times 7 \times 5=1260$
i.e, the required number $=\frac{1260}{2}=630$
41. Answer: D
42. Answer: B

Explanation: Required number of students
$=\mathrm{LCM}$ of $6,8,10=120$
43. Answer: B
44. Answer: B

Explanation: Using Rule 5,

Here, $12-5=7$,
$16-9=7$
i.e., required number
$=($ L.C.M. of 12 and 16) -7
$=48-7=41$
45. Answer: C

Explanation: Using Rule 5,

Here, Divisor - remainder = 1
e.g., $10-9=1,9-8=1$,
$8-7=1$
i.e., required number
$=($ L.C.M. of 10, 9, 8) -1
= $360-1=359$
46. Answer: D

Explanation: We find LCM of 5, 6 and 8
$5=5$
$6=3 \times 2$
$8=23$
$=2^{3} \times 3 \times 5=8 \times 15=120$

Required number $=120 \mathrm{~K}+3$
i.e, when $K=2,120 \times 2+3=243$ required no.

It is completely divisible by 9
47. Answer: D

Explanation: LCM of 16, 18, 20 and $25=3600$
i.e., required number $=3600 \mathrm{~K}+4$ which is exactly divisible by 7 for certain value of K.

When $K=5$,
Number $=3600 \times 5+4$
$=18004$ which is exactly divisible by 7 .
48. Answer: B

Explanation: LCM of 3,5,6, 8, 10 and 12
$=120$
i.e, required number
$=120 x+2$, which is exactly divisible by 13.
$120 x+2=13 \times 9 x+3 x+2$

Clearly $3 x+2$ should be divisible by 13 .

For $x=8,3 x+2$ is divisible by 13 .
i.e, required number $=120 x+2=120 \times 8+2$
$=960+2=962$
49. Answer: D
50. Answer: B

Explanation: We will find the LCM of 16, 24, 30 and 36 .

2	16,	24,	30,	36
2	8,	12,	15,	18
2	4,	6,	15,	9
3	2,	3,	15,	9
	2,	1,	5,	3

LCM $=2 \times 2 \times 2 \times 3 \times 2 \times 5 \times 3=720$

The largest number of five digits $=99999$

On dividing 99999 by 720, the remainder $=639$

The largest five-digit number divisible by 720
$=99999-639=99360$

Required number $=99360+10=99370$

Stay Connected With SPNotifier

Quantitative Aptitude EBooks

Reasoning Ability EBooks
English Language EBooks

