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Each small cube has atoms at alternate corners [Fig. 1(a)]. In all, each small
cube has 4 atoms. When joined to each other, they make a regular tetrahedron.
Thus, there is one tetrahedral void in each small cube and eight tetrahedral
voids in total. Each of the eight small cubes have one void in one unit cell of ccp

structure. We know that ccp structure has 4 atoms per unit cell. Thus, the
number of tetrahedral voids is twice the number of atoms.

Fig. 1: (a) Eight tetrahedral voids per unit cell of ccp structure

(b) one tetrahedral void showing the geometry.

(b) Locating Octahedral Voids

Let us again consider a unit cell of ccp or fcc lattice [Fig. 2(a)]. The body centre
of the cube, C is not occupied but it is surrounded by six atoms on face centres.
If these face centres are joined, an octahedron is generated. Thus, this unit cell
has one octahedral void at the body centre of the cube.

Besides the body centre, there is one octahedral void at the centre of each
of the 12 edges [Fig. 2(b)]. It is surrounded by six atoms, four belonging to the
same unit cell (2 on the corners and 2 on face centre) and two belonging to two
adjacent unit cells. Since each edge of the cube is shared between four adjacent

unit cells, so is the octahedral void located on it. Only 
1

4
th of each void belongs

to a particular unit cell.

(a) (b)

Fig. 2: Location of octahedral voids per unit cell of ccp or fcc lattice (a) at the body centre

of the cube and  (b) at the centre of each edge (only one such void is shown).
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20Chemistry

Thus in cubic close packed structure:

Octahedral void at the body-centre of the cube = 1

12 octahedral voids located at each edge and shared between four unit cells

= 
1

12 3
4

× =

∴ Total number of octahedral voids = 4

We know that in ccp structure, each unit cell has 4 atoms. Thus, the number

of octahedral voids is equal to this number.

1 .71 .71 .71 .71 .7 PackingPackingPackingPackingPacking
EfficiencyEfficiencyEfficiencyEfficiencyEfficiency

In whatever way the constituent particles (atoms, molecules or ions)
are packed, there is always some free space in the form of voids.
Packing efficiency is the percentage of total space filled by the
particles. Let us calculate the packing efficiency in different types of
structures.

Both types of close packing (hcp and ccp) are equally efficient. Let us
calculate the efficiency of packing in ccp structure. In Fig. 1.24 let the
unit cell edge length be ‘a’ and face diagonal AC = b.

      In ABC∆

AC2 = b2 = BC2 + AB2

= a2+a2 = 2a2 or

b = 2a

If r is the radius of the sphere, we find

b = 4r = 2a

or a = 
4r

2 2r
2

=

(we can also write, 
a

r )
2 2

=

We know, that each unit cell in ccp structure,
has effectively 4 spheres. Total volume of four

spheres is equal to ( ) 34 4/3 r× π  and volume of the

cube is a
3
 or ( )32 2r .

Therefore,

Volume occupiedby fourspheresin theunit cell 100
Packing efficiency = %

Total volumeof theunit cell

×

( )

( )
3

3

4 4/3 r 100
%

2 2r

× π ×
=

( ) 3

3

16/3 r 100
% 74%

16 2r

π ×
= =

1.7.1 Packing
Efficiency in
hcp and ccp
Structures

Fig. 1.24: Cubic close packing other

sides are not provided with

spheres for sake of clarity.
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21 The Solid State

From Fig. 1.25, it is clear that the
atom at the centre will be in touch
with the other two atoms diagonally
arranged.

In ∆ EFD,

b
2

= a
2
 + a

2
 = 2a

2

b = 2a

Now in ∆ AFD

c
2

= a
2
 + b

2
 = a

2
 + 2a

2
 = 3a

2

c = 3a

The length of the body diagonal
c is equal to 4r, where r is the radius
of the sphere (atom), as all the three
spheres along the diagonal touch
each other.

Therefore, 3a =  4r

a = 
4r

3

Also we can write, r = 
3

4
a

In this type of structure, total number of atoms is 2 and their volume

is ( ) 342 r .
3

× π

Volume of the cube, a
3
 will be equal to 

3

4 r
3

 
 
 

or 

3

3 4a r
3

 
=  

 
.

Therefore,

Volumeoccupied by twospheres in theunit cell 100
Packing efficiency = %

Total volumeof the unit cell

×

( )

( )
3

3

2 4/3 r 100
%

4/ 3 r

× π ×
=

 
 

( )
( )

3

3

8/3 r 100
% 68%

64/ 3 3 r

π ×
= =

In a simple cubic lattice the atoms are located only on the corners of the
cube. The particles touch each other along the edge (Fig. 1.26).
Thus, the edge length or side of the cube ‘a’, and the radius of each particle,
r are related as

a = 2r

The volume of the cubic unit cell = a3 = (2r)3 = 8r3

Since a simple cubic unit cell contains only 1 atom

The volume of the occupied space =  
34

r
3

π

1.7.2 Efficiency of
Packing in
Body-
Centred
Cubic
Structures

1.7.3 Packing
Efficiency in
Simple Cubic
Lattice

Fig. 1.25: Body-centred cubic unit

cell (sphere along the

body diagonal are shown

with solid boundaries).
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∴ Packing   efficiency

= 
Volumeof one atom

100%
Volumeof cubic unit cell

×

= 

3

3

4
r

3 100 100
68r

π π
× = ×

= 52.36% = 52.4 %

Thus, we may conclude that ccp

and hcp structures have maximum
packing efficiency.

From the unit cell dimensions, it is possible to calculate the volume of
the unit cell. Knowing the density of the metal, we can calculate the
mass of the atoms in the unit cell. The determination of the mass of a
single atom gives an accurate method of determination of Avogadro
constant. Suppose, edge length of a unit cell of a cubic crystal
determined by X-ray diffraction is a, d the density of the solid substance
and M the molar mass. In case of cubic crystal:

Volume of a unit cell = a
3

Mass of the unit cell

= number of atoms in unit cell × mass of each atom = z × m

(Here z is the number of atoms present in one unit cell and m is the
mass of a single atom)

Mass of an atom present in the unit cell:

m 
A

M
=

N
(M is molar mass)

Therefore, density of the unit cell

  
3 3 3

A A

massof unit cell
=

volume of unit cell

z.m z.M zM
= =  or d =

a a .N a N

Remember, the density of the unit cell is the same as the density of
the substance. The density of the solid can always be determined by
other methods. Out of the five parameters (d, z, M, a and N

A
), if any

four are known, we can determine the fifth.

Fig. 1.26
Simple cubic unit cell.

The spheres are in

contact with each

other along the edge of

the cube.

1 .81 .81 .81 .81 .8 CalculationsCalculationsCalculationsCalculationsCalculations
InvolvingInvolvingInvolvingInvolvingInvolving
Unit CellUnit CellUnit CellUnit CellUnit Cell
DimensionsDimensionsDimensionsDimensionsDimensions

An element has a body-centred cubic (bcc) structure with a cell edge of
288 pm. The density of the element is 7.2 g/cm3. How many atoms are
present in 208 g of the element?

Volume of the unit cell = (288 pm)3

= (288×10-12 m)3 = (288×10-10 cm)3

= 2.39×10-23 cm3

Example 1.3Example 1.3Example 1.3Example 1.3Example 1.3

SolutionSolutionSolutionSolutionSolution
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Example 1.4Example 1.4Example 1.4Example 1.4Example 1.4

Volume of 208 g of the element

3

3

208
28.88

7.2 g −= = =
mass g

cm
density cm

Number of unit cells in this volume

3

23 3

28.88

2.39 10 /  −=
×

cm

cm unit cell
= 12.08×1023 unit cells

Since each bcc cubic unit cell contains 2 atoms, therefore, the total number
of atoms in 208 g  = 2 (atoms/unit cell) × 12.08 × 1023 unit cells

= 24.16×1023  atoms

X-ray diffraction studies show that copper crystallises in an fcc unit
cell with cell edge of 3.608×10-8 cm. In a separate experiment, copper is
determined to have a density of 8.92 g/cm3, calculate the atomic  mass
of copper.

In case of fcc lattice, number of atoms per unit cell, z = 4 atoms

Therefore, M = 
3

AdN a

z
− −× × × ×

=
–3 23 1 8 38.92g cm 6.022 10 atomsmol (3.608 10 cm)

4atoms
= 63.1 g/mol

Atomic mass of copper = 63.1u

Silver forms ccp lattice and X-ray studies of its crystals show that the
edge length of its unit cell is 408.6 pm. Calculate the density of silver
(Atomic mass = 107.9 u).

Since the lattice is ccp, the number of silver atoms per unit cell = z = 4

Molar mass of silver = 107.9 g mol
–1

 = 107.9×10-3 kg mol–1

Edge length of unit cell  = a = 408.6 pm = 408.6×10–12 m

Density, d = 3
A

z.M

a .N

=  
( )

( ) ( )

3 1

3
12 23 1

4 107.9 10 kg mol

408.6 10 m 6.022 10 mol

− −

− −

× ×

× ×
 = 10.5×103 kg m–3

= 10.5 g cm-3

Example 1.5Example 1.5Example 1.5Example 1.5Example 1.5

SolutionSolutionSolutionSolutionSolution

Intext QuestionsIntext QuestionsIntext QuestionsIntext QuestionsIntext Questions

1.14 What is the two dimensional coordination number of a molecule in
square close-packed layer?

1.15 A compound forms hexagonal close-packed structure. What is the total
number of voids in 0.5 mol of it? How many of these are tetrahedral voids?

SolutionSolutionSolutionSolutionSolution
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Although crystalline solids have short range as well as long range
order in the arrangement of their constituent particles, yet crystals are
not perfect.  Usually a solid consists of an aggregate of large number
of small crystals.  These small crystals have defects in them.  This
happens when crystallisation process occurs at fast or moderate rate.
Single crystals are formed when the process of crystallisation occurs at
extremely slow rate.  Even these crystals are not free of defects. The
defects are basically irregularities in the arrangement of constituent
particles.  Broadly speaking, the defects are of two types, namely, point

defects and line defects. Point defects are the irregularities or
deviations from ideal arrangement around a point or an atom in a
crystalline substance, whereas the line defects are the irregularities
or deviations from ideal arrangement in entire rows of lattice points.
These irregularities are called crystal defects. We shall confine our
discussion to point defects only.

Point defects can be classified into three types : (i) stoichiometric defects
(ii) impurity defects and (iii) non-stoichiometric defects.

(a) Stoichiometric Defects

These are the point defects that do not disturb the stoichiometry of

the solid. They are also called intrinsic or thermodynamic defects.

Basically these are of two types, vacancy defects and interstitial defects.

(i) Vacancy Defect: When some of the lattice sites are vacant, the
crystal is said to have vacancy defect (Fig. 1.27). This results in
decrease in density of the substance.  This defect can also develop
when a substance is heated.

(ii) Interstitial Defect: When some constituent particles
(atoms or molecules) occupy an interstitial site,
the crystal is said to have interstitial defect
(Fig. 1.28). This defect increases the density of the
substance.

Vacancy and interstitial defects as explained

above can be shown by non-ionic solids.  Ionic

solids must always maintain electrical neutrality.

Rather than simple vacancy or interstitial

defects, they show these defects as Frenkel and

Schottky defects.

1 .91 .91 .91 .91 .9 ImperfectionsImperfectionsImperfectionsImperfectionsImperfections
in Solidsin Solidsin Solidsin Solidsin Solids

1.16 A compound is formed by two elements M and N. The element N
forms ccp and atoms of M occupy 1/3rd of tetrahedral voids. What
is the formula of the compound?

1.17 Which of the following lattices has the highest packing efficiency (i) simple
cubic (ii) body-centred cubic and (iii) hexagonal close-packed lattice?

1.18 An element with molar mass 2.7×10-2 kg mol-1 forms a cubic unit cell
with edge length 405 pm. If its density is 2.7×103 kg m-3, what is the
nature of the cubic unit cell?

1.9.1 Types of
Point Defects

Fig. 1.27: Vacancy defects
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(iii) Frenkel Defect: This
defect is shown by ionic
solids. The smaller ion
(usually cation) is
dislocated from its normal
site to an interstitial site
(Fig. 1.29). It creates a
vacancy defect at its
original site and an
interstitial defect at its
new location.

Frenkel defect is also
called dislocation defect.
It does not change the density of the solid.  Frenkel defect is
shown by ionic substance in which there is a large difference in
the size of ions, for example, ZnS, AgCl, AgBr and AgI due to
small size of Zn2+ and Ag+ ions.

(iv) Schottky Defect: It is basically a vacancy defect in ionic solids. In
order to maintain electrical neutrality, the number of missing
cations and anions are equal (Fig. 1.30).

Like simple vacancy
defect, Schottky defect also
decreases the density of the
substance. Number of such
defects in ionic solids is quite
significant. For example, in
NaCl there are approximately
10

6
 Schottky pairs per cm

3

at room temperature. In
1 cm

3
 there are about

10
22

 ions.  Thus, there is one
Schottky defect per 10

16
 ions.

Schottky defect is shown by
ionic substances in which the

cation and anion are of almost similar sizes.
For example, NaCl, KCl, CsCl and AgBr. It may
be noted that AgBr shows both, Frenkel as
well as Schottky defects.

(b)  Impurity Defects

If molten NaCl containing a little amount
of SrCl2 is crystallised, some of the sites of
Na+ ions are occupied by Sr2+ (Fig.1.31).
Each Sr2+ replaces two Na+ ions. It occupies
the site of one ion and the other site remains
vacant. The cationic vacancies thus
produced are equal in number to that of
Sr2+ ions. Another similar example is the
solid solution of CdCl2 and AgCl.

Fig. 1.28: Interstitial defects

Fig. 1.31: Introduction of cation vacancy in

NaCl by substitution of Na+ by Sr2+

Fig. 1.29: Frenkel defects Fig. 1.30: Schottky defects

2019-20



26Chemistry

(c) Non-Stoichiometric Defects

The defects discussed so far do not disturb the stoichiometry of
the crystalline substance.  However, a large number of non-
stoichiometric inorganic solids are known which contain the
constituent elements in non-stoichiometric ratio due to defects in
their crystal structures.  These defects are of two types: (i) metal
excess defect and (ii) metal deficiency defect.

(i) Metal Excess Defect

Ã Metal excess defect due to anionic vacancies: Alkali halides
like NaCl and KCl show this type of defect. When crystals of

NaCl are heated in an atmosphere of sodium vapour, the
sodium atoms are deposited on the surface of the crystal.
The Cl– ions diffuse to the surface of the crystal and
combine with Na atoms to give NaCl. This happens by
loss of electron by sodium atoms to form Na+ ions. The
released electrons diffuse into the crystal and occupy
anionic sites (Fig. 1.32). As a result the crystal now has
an excess of sodium. The anionic sites occupied by
unpaired electrons are called F-centres (from the German
word Farbenzenter for colour centre). They impart yellow
colour to the crystals of NaCl. The colour results by
excitation of these electrons when they absorb energy from
the visible light falling on the crystals. Similarly, excess of
lithium makes LiCl crystals pink and excess of potassium
makes KCl crystals violet (or lilac).

Ã Metal excess defect due to the presence of extra cations at

interstitial sites: Zinc oxide is white in colour at room
temperature. On heating it loses oxygen and turns yellow.

heating 2
2

1
ZnO Zn O 2e

2

+ −→ + +

Now there is excess of zinc in the crystal and its formula becomes
Zn1+xO. The excess Zn

2+
 ions move to interstitial sites and the electrons

to neighbouring interstitial sites.

(ii) Metal Deficiency Defect

There are many solids which are difficult to prepare in the
stoichiometric composition and contain less amount of the metal as
compared to the stoichiometric proportion. A typical example of
this type is FeO which is mostly found with a composition of Fe0.95O.
It may actually range from Fe0.93O to Fe0.96O.  In crystals of FeO
some Fe2+ cations are missing and the loss of positive charge is
made up by the presence of required number of Fe3+ ions.

Solids exhibit an amazing range of electrical conductivities, extending
over 27 orders of magnitude ranging from 10

–20
 to 10

7
  ohm

–1
 m

–1
.

Solids can be classified into three types on the basis of their
conductivities.

(i) Conductors: The solids with conductivities ranging between 104

to 107 ohm–1m–1 are called conductors.  Metals have conductivities
in the order of 107 ohm–1m–1 are good conductors.

1 . 101 . 101 . 101 . 101 . 10 ElectricalElectricalElectricalElectricalElectrical
PropertiesPropertiesPropertiesPropertiesProperties

Fig. 1.32: An F-centre in a crystal
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