ntnews.com ntadilabad.com

Formation of ozone is an ..?

16th GROUP ELEMENTS

>. Industrially dioxygen is obtained from purified air by fractional distillation

Physical properties: It is a colourless and odourless gas.

- ➤ Its solubility in water is to the extent of 3.08 cm³ in 100 cm³ water at 293 K
- ➤ It liquefies at 90K and freezes at 55K
- \triangleright Oxygen atom has three stable isotopes O^{16} . O^{17} . O^{18}
- Molecular oxygen is paramagnetic even though it contains even number of electrons.

Chemical properties: Oxygen directly reacts with nearly all metals and non-metals except some metals like Au, Pt and noble gases.

With metals :- $2Ca + O_2 \rightarrow 2CaO$

 $4Al + 3O_2 \rightarrow 2Al_2O_3$

With non metals:- $P_4 + 5O_2 \rightarrow P_4O_{10}$

$$C + O_2 \rightarrow CO_2$$

With other compounds

 $ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Some compounds are catalytically oxidised.

 $2SO_2 + O_2 \xrightarrow{v_2o_5} 2SO_3$

$$4HCl + O_2 \xrightarrow{CuCl_2} 2Cl_2 + 2H_2O$$

Uses: In welding and cutting – oxy-hydrogen or oxy-acetylene torch is used.

- > In the manufacture of many metals, particularly steel
- Oxygen cylinder are widely used in hospitals, high altitude flying and in mountaineering
- As a fuel in rockets (Hydrazine in liquid oxygen produces tremendous thrust in rockets)

Oxides: A binary compound of oxygen with another element is called oxide.

- Oxides are two types:
 - 1. Simple Oxide (Na₂O, Al₂O₃ etc..)
 - 2. Mixed Oxides

Mixed oxides:- Formed by the combination of two simple oxides eg: Red lead, Pb_3O_4

 $(PbO_2.2PbO), Fe_3O_4(FeO+Fe_2O_3) \\$

- Simple oxides classified as
 - (i) **Acidic oxides** (Non-metal Oxides)oxides of non metals which give acids when dissolved in water are called acidic oxides.

eg. CO_2 , NO_2 , P_2O_5 , SO_2 , SO_3 , Cl_2O_7 etc..

 $CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)

 $CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)

 $SO_2 + H_2O \rightarrow H_2SO_3$ (Sulphurous acid)

- Some metals in high oxidation state also have acidic character (eg Mn,O₁, CrO₃, V,O₄)
 - ii) **Basic oxides:-** The oxides which give a base with water are known as basic oxides

(eg Na₂O, CaO, BaO)

(iii) **Amphoteric oxides:-** The oxides which can react with both acids and alkalies are known as amphoteric oxides

eg $ZnO, PbO, Al_2O_3, SnO_2, BeO, Sb_2O_3$

$$Al_2O_{3_{(S)}} + 6NaOH_{(aq)} + 3H_2O_{(l)} \rightarrow$$

$$2Na_3 \left[Al(OH)_6 \right]_{(a)}$$

$$\begin{split} Al_2O_{3(s)} + 6HCl_{(\alpha q)} + 9H_2O_{(I)} \rightarrow \\ 2\left\lceil Al\left(H_2O\right)_b\right\rceil^{3+}_{(\alpha q)} + 6Cl^{-}_{(\alpha q)} \end{split}$$

 $ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$

 $ZnO + 2HCl \rightarrow ZnCl_2 + H_2O$

(iv) Neutral oxides - such oxides do not combine with an acid or a base eg: NO. N.O. CO. H.O. etc

Ozone: Ozone is present in upper atmosphere and absorbs the harmful U.V. rays of sun.

- Ozone is prepared by subjecting silent electric discharge of cold and dry oxygen gas
- > Formation of ozone is an endothermic, reversible

$$3O_2 \xrightarrow{electric} 2O_3$$
; $\Delta H = +284.5kJ$

- Ozone is prepared in the laboratory by using Siemen's and Brodie's ozonisers. In this process around 10% conversion of O₂ to O₃ is possible.
- The obtained gas is a mixture of O₂+O₃ it is called Ozonised oxygen
- Ozonised oxygen is cooled, when O₃ first liquifies and so can be separated from gaseous O₂
- \triangleright Electrolysis of acidulated water with platinum electrodes gives O_3 at anode. The gases liberated at the anode contain about 95% O_3 and 5% O_2 .
- Ozone can also be prepared by heating oxygen to 2773K and cooling it.(thermal method).

Physical Properties: O₃ is a pale blue, pungent smelling poisonous gas, dark blue in liquid state, violet black in solid state.

- O₃ harmless in small concentration, however if concentration exceeds 100ppm, breathing becomes uncomfortable resulting in headache and nausea.
- Ozone is thermodynamically unstable.
 Decomposition is associated with increase in volume
- In the decomposition heat liberates(ΔH is negative) and the entropy increases(ΔS is positive) for the decomposition of ozone into oxygen ΔG value is negative.
- It is highly soluble in turpentine oil, glacial acetic acid, or carbon tetrachloride.
- It decolourises organic colouring matter by oxidation.
- O₃ bleaches by oxidation.

Chemical properties: Oxidising reactions

OZONE OXIDISES:		
REACTION	ELEMENT WHOSE O.N. CHANGES	CHANGE IN OXIDATION STATE
a) Black PbS to white PbSO ₄	S	-2 to +6
b) HCl to Cl ₂	Cl	-1 to 0
c) Kl to l ₂	1	-1 to 0
d) Moist l ₂ to HlO ₃ (iodic acid)	1	0 to +5
e) Ag to Ag ₂ O (blackening of silver)	Ag	0 to +1
f) Hg to Hg ₂ O (Tailing of mercury)	Hg	0 to +1
g) K ₄ [Fe(CN) ₆] to K ₃ [Fe(CN) ₆]	Fe	+2 to +3
h) SO ₂ to SO ₃	S	+4 to +6
I) SnCl ₂ to SnCl ₄	Sn	+2 to +4

- $\hbox{$\blacktriangleright$ Oxidising power of O_3 is weaker than F_2 but stronger than H_2O_2 or $KMnO_4$. }$
- Ozone decomposes to give nascent oxygen. $O_3 \rightarrow O_2 + (O)$.

Thus in all oxidation reactions if one mole of ozone is consumed, one mole of oxygen is formed. (in presence of HCl)

- > Ozone reduces: a) BaO_2 to BaOb) H_2O_2 to H_2O c) Ag_2O to Ag
- \triangleright . When O_3 reacts with an excess eg: KI solution buffered with a borate buffer ($P^H = 9.2$), Iodine is liberated which can be titrated against a standard solution of sodium thiosulphate. This is the quantitative method for estimating O_3 gas.

$$2KI + H_2O + O_3 \rightarrow I_2 + 2KOH + O_2$$

$$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$$

When ozone is bubbled through the solution of an alkene or alkyne in an inert sovlent like

 CH_2Cl_2 , CCl_4 etc at 195 K, ozonides are formed

Structure:

- Ozone is an angular molecule and diamagnetic
- ➤ The two oxygen oxygen bond lengths in the ozone molecule are identical (128 pm)

Uses of Ozone: It is used as germicide and disinfectant.

- > It is used for sterilizing water.
- it is used in improving the quality of atmosphere at crowded places (tube railways, mines, cinema halls etc.,).
- It is used for bleaching oils, oil paintings, ivory articles , flour, starch etc.
- It is used in the manufacture of artificial silk and synthetic camphor.
 It is used to locate mulitiple bonds in carbon
- compounds.

 It acts as an oxidising agent in the manufacture
- of potassium permanganate
 A mixture of O₃ and C₂N₂ is known as cyanogen and is used as Rocket fuel.

Sulphur - Allotropic forms

- All VI A group elements exhibit allotropism except Te
- Oxygen occurs in two non metallic forms
 (a) Oxygen (O₂) (b)Ozone (O₃)
- Oxygen is paramagnetic as it contains two unpaired electrons in anti bonding M.O(as per Molecular Orbital Theory).
- Ozone is a triatomic diamagnetic allotropic form of oxygen. It is unstable and decomposes to O₂. 2O₃ → 3O₃
- Sulphur has more number of allotropic forms all these are non-metallic.
- > Allotropes of Sulphur are :
 - a) α Sulphur or Rhombic sulphur.
 - b) β -Sulphur or monoclinic sulphur or prismatic sulphur.
 - c) γ Monoclinic sulphur.
 - d) χ Sulphur or plastic sulphur.
- At 369K both Rhombic and monoclinic forms can co-exist in equilibrium. This temperature is called **transition temperature** of sulphur.
- The stable form at room temperature is rhombic a) Yellow (or) α sulphur
- above 369K Rhombic sulphur transforms to monoclinic sulphur
 Rhombic sulphur is yellow in colour, M.P 385.8
- K and specific gravity 2.06.
- Rhombic sulphur crystals are formed by evoparating the solution of roll sulphur in CS₂.It is insoluble in water but dissolves to some extent in benzene, alcohol and ether .It readly soluble in CS₂

Dr. Krupakar Pendli Centre Head Urbane junior colleges 7893774888

- β Sulphur melts at 392 K and its specific gravity is 1.98
- . It is soluble in CS,
- >. β form of sulphur is prepared by melting Rhombic sulphur in a dish and cooling, till crust is formed . Two holes are made in the crust and the remaining liquid poured out on removing the crust, colourless needle shaped crystals of β sulphur are formed .
- \triangleright α, β and γ forms of sulphur are crystalline in nature and possess puckered ring structures (S_8) (crown structure)
- Sulphur persists with the S₈ units, just above the boiling point of sulphur (160°C). Further increase in temperature leads to the dissociation of S₈ units successively into S₆ (Engel's sulphur), S₄ and S₂ units.
- ➤ In cyclo -S₆ the ring adopts the chair form. At elevated temperatures (1000K)S₂ is the dominant species and is paramagnetic like O₂.
- \gt . S_2 molecule has two unpaired electron in the antibonding π^* orbitals like O_2 .
- >. Structure of S_8 ring (crown) Structure of S_6 ring (chair)

Puckered ring S₈ molecule

S. Chair molecule

Sulphur Dioxide: When sulphur is burnt in air or oxygen SO_2 is formed along with 6-8% sulphur trioxide

➤. In the laboratory SO₂ is prepared by treating a sulphite with dilute sulphuric acid

$$SO_{3_{(\alpha g)}}^{2-} + 2H_{(\alpha g)}^+ \to SO_{2_{(g)}} + H_2O_{(l)}$$

>. Industrially it is produced as a by-product of the roasting of sulphide ores

$$4FeS_{2(s)} + 11O_{2(s)} \rightarrow 2Fe_2O_{3(s)} + 8SO_{2(s)}$$

>. Liquified SO₂ is stored in steel cylinders